用户名: 密码: 验证码:
低温送风温湿度控制数值仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical study on influence of cold air distribution on temperature and humidity
  • 作者:李冬冬 ; 邵飞 ; 卢宏健 ; 孟昭男 ; 张鹏 ; 李栋
  • 英文作者:Li Dongdong;Shao Fei;Lu Hongjian;Meng Zhaonan;Zhang Peng;Li Dong;701 Institute, China Shipbuilding Industry Corporation;Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University;
  • 关键词:低温送风 ; 数值仿真 ; 相对湿度 ; 热舒适性
  • 英文关键词:Cold air distribution;;Numerical simulation;;Relative humidity;;Thermal comfort
  • 中文刊名:DWYC
  • 英文刊名:Cryogenics & Superconductivity
  • 机构:中国船舶重工集团公司第七〇一研究所;上海交通大学制冷与低温工程研究所;
  • 出版日期:2019-03-22 16:49
  • 出版单位:低温与超导
  • 年:2019
  • 期:v.47
  • 语种:中文;
  • 页:DWYC201903014
  • 页数:6
  • CN:03
  • ISSN:34-1059/O4
  • 分类号:76-81
摘要
低温送风是一种新型的送风方式,其送风温度较低,因而具有比常规送风更强的除湿能力。以办公室作为研究对象,建立三维数值模型,对房间内的温湿度分布和空气流动进行数值仿真计算,比较常规送风和低温送风条件下办公室内温湿度的差异。对比数值计算结果,发现两种送风方式在相同制冷量下,房间的温度分布差异不大,但低温送风具有更强的除湿能力,其相对湿度要比常规送风低10%左右,人员的热舒适性更好。此外,从制冷机组出来的冷风和回风按一定比例回合之后,混合风的温度上升,相对湿度下降,可以有效避免送风口附近区域的凝露现象。
        Cold air distribution is a novel concept, which has stronger dehumidifying capability than conventional air distribution due to its low supply air temperature. An office room with staffs was numerical studied on the basis of a 3-dimensional model. Using k-ε turbulence model and species transport model, the temperature filed, relative humidity filed and streamline field of the office room were all obtained. Comparing the numerical results of cold air supply system and conventional system with the same cooling capacity, it can be found that the average temperatures of two systems are similar. However, the relative humidity of cold air distribution system is 10 percent lower than that of conventional system, thus a better thermal comfort is obtained. Moreover, the condensation can be avoided by mixing the cold air from refrigerating unit and the return air from office, which results from the high temperature and less relative humidity of the mixing air.
引文
[1] FANGER P O. Thermal comfort-analysis and application in environment engineering[M]. Copenhagen: Danish Technology Press, 1970.
    [2] TOFTUM J, JORGENSEN A S, FANGER P O. Upper limits for indoor air humidity to avoid uncomfortably humid skin[J]. Energy and Buildings, 1998, 28: 1-13.
    [3] BERGLUND L G.Pereeived air quality and the thermal environment[J]. IAQ, 1989, 89: 93-99.
    [4] 赵航宇. 室内相对湿度及送风方式对人体热舒适性影响的研究[D]. 天津:天津商业大学, 2016.
    [5] 王以忠, 胡春园, 陈绍慧, 等. 冷藏车内温度场和湿度场的数值模拟研究[J]. 保鲜与加工, 2010(3): 26-29.
    [6] 苏文博. 武汉地铁车站温湿度模拟分析[D]. 武汉:华中科技大学, 2012.
    [7] 李蕾, 魏兵. 低温变风量空调系统的能耗分析[J]. 低温与超导, 2014, 42(9): 64-68.
    [8] 王维平, 刘佳霓, 周丽. 变风量与低温送风空调的分析研究[J]. 无线互联科技, 2017(3): 118-119.
    [9] 董鹏, 李志印, 简弃非. 大温差变风量送风技术在潜艇空调中的应用[J]. 中国舰船研究, 2012, 7(6): 90-97.
    [10] 原世杰, 鹿世化. 送风温度变化对数据中心热环境影响的模拟研究[J]. 低温与超导, 2015, 43(10): 55-61.
    [11] 张瑞, 柳建华, 张良. 低温送风室内气流组织的实验研究[J]. 制冷技术, 2015, 35(5): 25-30, 35.
    [12] GOKHAN S, MUHSIN K. Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators[J]. Energy and Buildings, 2011, 43(1): 137–146.
    [13] KIM G, SCHARFER L, LIM T S, et al. Thermal comfort prediction of an underfloor air distribution system in a large indoor environment[J]. Energy and Buildings, 2013, 64(64): 323-331.
    [14] YOUSSEF A A, MINA E M, ELBAZ A R, et al. Studying comfort in a room with cold air system using computational fluid dynamics[J]. Ain Shams Engineering Journal, 2018,9(4):1753-1762.
    [15] 虞婷婷, 刘恩海. 基于低温送风空调系统的室内气流组织分析[J]. 低温与超导, 2014, 42(4): 83-88.
    [16] 赵荣义, 范存养, 薛殿华. 空气调节[M]. 第三版. 北京: 中国建筑工业出版社, 2000.
    [17] 刘拴强, 刘晓华, 江亿. 温湿度独立控制空调系统中独立新风系统的研究(2):送风参数的确定[J]. 暖通空调, 2010, 40(12): 85-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700