用户名: 密码: 验证码:
基于变论域模糊增量理论的质子交换膜燃料电池温度控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature control of PEMFC system based on variable universe fuzzy incremental theory
  • 作者:谢雨岑 ; 邹见效 ; 彭超
  • 英文作者:XIE Yu-cen;ZOU Jian-xiao;PENG Chao;School of Automation Engineering, University of Electronic Science and Technology of China;
  • 关键词:燃料电池 ; 动态模型 ; 温度控制 ; 变论域模糊增量控制
  • 英文关键词:fuel cells;;dynamic model;;temperature control;;fuzzy incremental control based on variable universe
  • 中文刊名:KZLY
  • 英文刊名:Control Theory & Applications
  • 机构:电子科技大学自动化工程学院;
  • 出版日期:2019-03-15
  • 出版单位:控制理论与应用
  • 年:2019
  • 期:v.36
  • 基金:国家重点研发计划项目(2018YFB0105300)资助~~
  • 语种:中文;
  • 页:KZLY201903011
  • 页数:8
  • CN:03
  • ISSN:44-1240/TP
  • 分类号:94-101
摘要
质子交换膜燃料电池(PEMFC)内部的电化学反应过程直接表现为温度的变化,所以有效的温度控制是保证燃料电池可靠性和耐久性的关键.本文将模糊增量控制用于PEMFC热管理系统中,将PEMFC的温度和电堆出入口温度差保持在设定值.首先,建立PEMFC热管理系统的动态模型,包括PEMFC电堆模型和辅助散热设备模型.然后,基于建立的系统模型,设计了一种变论域的模糊增量控制器.该控制器通过伸缩因子来动态调节模糊控制器中的量化因子和比例因子,实现对模糊论域的调节,从而提高控制的灵敏性和精确度.最后,将该温度控制方法用于10 kW燃料电池系统中,实验结果表明变论域模糊增量控制器相比于其他模糊控制方法,不仅具有更快的动态响应速度,还具有更强的鲁棒性和更高的控制精度.
        The electrochemical reaction process in proton exchange membrane fuel cell(PEMFC) is directly manifested as temperature change of fuel cells. Hence the reliability and durability of PEMFC depend on effective temperature control. In this paper, the fuzzy incremental control theory is used in the PEMFC thermal management system to maintain the PEMFC temperature and the temperature difference between the stack within their setting ranges respectively. First,the dynamic model of the PEMFC thermal management system is established, including the sub-models of PEMFC stack and auxiliary cooling devices. Then, a novel fuzzy incremental controller with variable universe is designed based on the established model. The proposed controller adjusts the scaling factor and proportion factor in the fuzzy incremental controller through the contraction-expansion factor to realize the adjustment of the fuzzy universe regions, thereby improving the sensitivity and accuracy of the conventional fuzzy incremental controller. Finally, the proposed temperature control approach is applied to the 10 kW fuel cell system, the experimental results show that the fuzzy incremental controller based on variable universe has faster dynamic response, stronger robustness and higher control precision compared with the other fuzzy incremental control methods.
引文
[1]JIAO K,NI M.Challenges and opportunities in modelling of proton exchange membrane fuel cells(PEMFC).International Journal of Energy Research,2017,41(13):1-5.
    [2]RAHGOSHAY S M,RANJBAR A A,RAMIAR A,et al.Thermal investigation of a PEM Fuel Cell with cooling flow field.Energy,2017,134(1):61-73.
    [3]ANDREASEN K P,SOVACOOL B K.Hydrogen technological innovation systems in practice:comparing Danish and American approaches to fuel cell development.Journal of Cleaner Production,2017,94(1):359-368.
    [4]GAO F,BLUNIER B,MIRAOUI A,et al.A multiphysic dynamic1-D model of a proton-exchange-membrane fuel-cell stack for realtime simulation.IEEE Transactions on Industrial Electronics,2010,57(6):1853-1864.
    [5]GARRAIN D,LECHON Y,RUA C D L.Polymer electrolyte membrane fuel cells(PEMFC)in automotive applications:environmental relevance of the manufacturing stage.Smart Grid&Renewable Energy,2011,2(2):68-74.
    [6]NOLAN J,KOLODZIEJ J.Modeling of an automotive fuel cell thermal system.Journal of Power Sources,2010,195(15):4743-4752.
    [7]GUO A,CHEN W,LIU Z,et al.Tempreture model and predictive control for fuel cells in switcher locomotive.The 35th Chinese Control Conference(CCC).Chengdu:IEEE,2016,7:1934-1768.
    [8]AHN J W,CHOE S Y.Coolant controls of a PEM fuel cell system.Journal of Power Sources,2008,179(1):252-264.
    [9]LISO V,NIELSEN M P,KAR S K,et al.Thermal modeling and temperature control of a PEM fuel cell system for forklift applications.International Journal of Hydrogen Energy,2014,39(16):8410-8420.
    [10]YOU Z,XU T,LIU Z,et al.Study on air-cooled self-humidifying PEMFC control method based on segmented predict negative feedback control.Electrochimica Acta,2014,132(19):389-396.
    [11]CHENG S,FANG C,XU L,et al.Model-based temperature regulation of a PEM fuel cell system on a city bus.International Journal of Hydrogen Energy,2015,40(39):13566-13575.
    [12]POHJORANTA A,HALINEN M,PENNANEN J,et al.Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data.Journal of Power Sources,2015,277(3):239-250.
    [13]WANG Y,QIN F,OU K,et al.Temperature control for a polymer electrolyte membrane fuel cell by using fuzzy rule.IEEE Transactions on Energy Conversion,2016,31(2):1-9.
    [14]HU P,CAO G,ZHU X,et al.Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells.International Journal of Hydrogen Energy,2010,35(17):9110-9123.
    [15]WANG Guangjun,SHEN Shuguang,PENG Xiaoyan.A fuzzy increment control method of delay system and its application.Proceedings of the CSEE,2006,26(19):93-96.(王广军,沈曙光,彭晓艳.延迟系统的一种模糊增量控制方法及应用.中国电机工程学报,2006,26(19):93-96.)
    [16]LU Zhaomei,YU Yuehai.Polynomial reset incremental fuzzy controller.Journal of Southeast University,1991,29(1):49-53.(路兆梅,于跃海.多项式重置增量型模糊控制器.东南大学学报(自然科学版),1999,29(1):49-53.)
    [17]GU Jing,LU Languang,OUYANG Minggao.Thermal management subsystem model and temperature control for fuel cells.Journal of Tsinghua University,2007,47(11):2036-2039.(谷靖,卢兰光,欧阳明高.燃料电池系统热管理子系统建模与温度控制.清华大学学报(自然科学版),2007,47(11):2036-2039.)
    [18]ZHAO X,LI Y,LIU Z,et al.Thermal management system modeling of a water-cooled proton exchange membrane fuel cell.International Journal of Hydrogen Energy,2015,40(7):3048-3056.
    [19]LI Hongxing.Variable universe adaptive fuzzy controller.Science China(Series E),1999,29(1):32-42.(李洪兴.变论域自适应模糊控制器.中国科学(E辑),1999,29(1):32-42.)
    [20]ZHNAG Guoliang.Fuzzy Control and Its Application in MATLAB.Xi’an:Xi’an Jiaotong University Press,2002.(张国良.模糊控制及其MATLB应用.西安:西安交通大学出版社,2002.)
    [21]SHAO Cheng,DONG Xiwen,WANG Xiaofang.Selection method of the contraction-expansion factor of variable universe fuzzy controller.Information and Control,2010,39(5):536-541.(邵诚,董希文,王晓芳.变论域模糊控制器伸缩因子的选择方法.信息与控制,2010,39(5):536-541.)
    [22]ZHU Zenghui,XU Youchun,MA Yulin.Design of intelligent vehicle longitudinal acceleration tracking controller based on fuzzy control.Journal of Military Transportation University,2014,16(12):31-35.(朱增辉,徐友春,马育林.基于模糊控制的智能车辆纵向加速度跟踪控制器设计.军事交通学院学报,2014,16(12):31-35.)
    [23]ZHENG Hong,XU Hongbing,ZHU Guiping.Adaptive fuzzy control based on variable universe and its application to aero engine turbine power generator.Control Theory&Applications,2008,25(2):253-256.(郑宏,徐红兵,朱贵平.变论域自适应模糊控制在航机发电中的应用.控制理论与应用,2008,25(2):253-256.)
    [24]HU Peng,CAO Guangyi,ZHU Xinjian.Temperature model and fuzzy control for the proton-exchange-membrane fuel cell.Control Theory&Applications,2011,28(10):1371-1376.(胡鹏,曹广益,朱新坚.质子交换膜燃料电池温度模型与模糊控制.控制理论与应用,2011,28(10):1371-1376.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700