用户名: 密码: 验证码:
乌鲁木齐冬季浅薄型焚风对大气扩散条件及空气质量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Influence of Shallow Foehn on Atmospheric Diffusion Conditions and Air Quality over Urumqi in Winter
  • 作者:赵克明 ; 李霞 ; 孙鸣婧 ; 于碧馨 ; 阿不力米提江·阿布力克木 ; 卢新玉
  • 英文作者:ZHAO Keming;LI Xia;SUN Mingjing;YU Bixin;Ablimitjan Ablikim;LU Xinyu;Institute of Desert Meteorology,China Meteorological Administration;Center for Central Asia Atmosphere Science Research;Xinjiang Meteorological Bureau;College of Atmospheric Sciences,Lanzhou University;
  • 关键词:浅薄型焚风 ; 最大混合层厚度 ; 逆温 ; 日变化 ; 空间分布
  • 英文关键词:shallow foehn;;the maximum mixing layer depth(MMLD);;inversion;;diurnal variation;;spatial distribution
  • 中文刊名:XJQX
  • 英文刊名:Desert and Oasis Meteorology
  • 机构:中国气象局乌鲁木齐沙漠气象研究所;中亚大气科学研究中心;新疆气象台;兰州大学大气科学学院;
  • 出版日期:2019-02-15
  • 出版单位:沙漠与绿洲气象
  • 年:2019
  • 期:v.13;No.73
  • 基金:国家自然科学基金(41575011);; 中亚大气科学研究基金(CAAS201805);; 中央级公益性科研院所基本科研业务费专项资金项目(IDM201501)联合资助
  • 语种:中文;
  • 页:XJQX201901003
  • 页数:8
  • CN:01
  • ISSN:65-1265/P
  • 分类号:15-22
摘要
基于2013—2015年冬季乌鲁木齐市6个环境监测站6类污染物逐时的浓度数据,结合乌鲁木齐逐时的地面气象数据、风廓线雷达及常规探空资料,分析了浅薄型焚风对大气扩散条件及污染物浓度变化规律的影响。研究发现:冬季乌鲁木齐浅薄型焚风的出现频率为57.3%,焚风气流平均气流底高约600 m,气流顶高约2100 m,气流厚度约1500 m;乌鲁木齐市冬季焚风日大气扩散条件与非焚风日相比,最大混合层厚度偏低200 m,逆温层厚度偏厚350 m,逆温差差异达4.4℃,逆温强度和平均风速差别不大;焚风日各污染等级的出现频率都高于非焚风日:Ⅲ-Ⅵ级污染日出现频率累积偏高18%,Ⅵ级严重污染日则必有焚风相伴随;除O3以外,焚风日里各类污染物浓度都高于非焚风日,但日变化规律类似;6类污染物浓度的空间分布在焚风日和非焚风日一致,但是各站污染物浓度均高于非焚风日(O3除外)。市区偏南地带空气质量稍优于市区中心和北部地区。
        Using hourly air pollutants concentration from six environmental monitor stations,meteorological data and wind profile radar data in winter during 2013-2015,the influences of shallow foehn on diffusion conditions and air pollution concentration over Urumqi were analyzed. The results showed that the occurrence frequency of shallow foehn was 57.3% in Urumqi in winter. The flow depth,base height and top height of shallow foehn were about 1500 m,600 m and 2100 m,respectively. The maximum mixing layer depth, the inversion depth, the temperature difference between the top and bottom of inversion layer on foehn days were 200 m lower,344 m thicker and4.4 ℃ higher than the corresponding values on non-foehn days, respectively. However, the differences of wind speed and inversion intensity between on foehn days and on non-foehn days were slight. Also,the frequency of each pollution level on foehn days was higher than on non-foehn days with extra frequency of 18% from level Ⅲ to level Ⅵ. Moreover,there was foehn existence on days with air pollution level Ⅵ. Except for O3,the other five air pollutant concentrations at each environmental station on foehn days were all higher than those on non-foehn days but with similar diurnal variation. The spatial distributions of six air pollutants were almost same on foehn days and non-foehn days. Overall,the air quality at south urban area was relatively excellent than that at other areas.
引文
[1] WMO. International Meteorological Vocabulary. WMO No,182[M].World Meteorological Organization,Geneva,Switzerland 1992.
    [2] Richner, H,P H覿chler. Understanding and forecasting Alpine foehn, in Mountain Weather Research and Forecasting,Springer Atmospheric Sciences,2013:219-260.
    [3] Neiman P J,Ralph F M,White A B,et al. A Multiwinter Analysis of Channeled Flow through a Prominent Gap along the Northern California Coast during CALJET and PACJET[J]. Monthly Weather Review,2006,134(7):280-287.
    [4] Mayr G J,Armi L,Gohm A,et al. Gap flows:Results from the Mesoscale Alpine Programme[J]. Quarterly Journal of the Royal Meteorological Society,2007, 133(625):881-896.
    [5] Zangl G. Deep and shallow south foehn in the region of Innsbruck:Typical features and semi-idelized numerical simulations[J]. Meteorology&Atmospheric Physics,2003,83(3-4):237-261.
    [6] angl G. Idealized numerical simulations of shallow fohn[J].Quarterly Journal of the Royal Meteorological Society.2002,128(580):431-450.
    [7] Flamant C,Drobinski P,Nance L,et al. Gap flow in an Alpine valley during a shallow south f?hn event:Observations, numerical simulations and hydraulic analogue[J]. Quarterly Journal of the Royal Meteorological Society,2002,128(582):1173-1210.
    [8] Vergeiner J,Mayr G J. Case study of the MAP-IOP“sandwich” foehn on 18th October 1999[J]. MAP Newslett,2000,13:36-37.
    [9]张家宝.新疆短期天气预报指导手册[M].乌鲁木齐:新疆人民出版社,1986.
    [10]潘守文.现代气候学原理[M].北京:气象出版社,1994.
    [11]李霞.峡口城市乌鲁木齐冬季重污染的机理研究[D].中国科学院大学,2015.
    [12]孟齐辉,吕斌,刁平.乌鲁木齐地区东南大风与气压场演变的关系[J].新疆气象,1996,19(1):5-9.
    [13]苏小岚.1998年4月乌鲁木齐东南大风天气过程分析[J].新疆气象,2001,24(3):15-17.
    [14]张利平.乌鲁木齐国际机场20年东南大风天气的统计特征分析[J].中国民航飞行学院学报,2007,18(2):3-6.
    [15]窦新英,宾建华,蒋军.一次造成乌鲁木齐市电网瑶线铁塔倒塌事故的气象原因分析[J].新疆气象,2005,28(5):32-34.
    [16]黄海波.2009年4月25日—26日乌鲁木齐机场大风天气的数值分析[J].中国民航飞行学院学报,2010,21(3):31-33.
    [17]肉孜·阿基,李如琦,窦新英.乌鲁木齐一次强东南大风天气成因分析[J].干旱气象,2015,33(3):474-480.
    [18]万瑜,曹兴,窦新英,等.乌鲁木齐东南大风气压场中尺度特征分型及其演变分析[J].干旱区研究,2016,33(4):724-731.
    [19]张凤梅,杜安妮,陈阳权.乌鲁木齐机场一次持续性强东南大风过程分析[J].空中交通,2015(6):39-43.
    [20]李霞,杨静,麻军,等.乌鲁木齐重污染日的天气分型和边界层结构特征研究[J].高原气象,2012,31(5):1414-1423.
    [21] Li X,Xia X,Xin Y,et al. An examination of boundary layer structure under the influence of the gap winds in Urumqi,China,during air pollution episode in winter[J].Journal of the Air&Waste Management Association,2012,62(1):26.
    [22] Li X,X Xia,L Wang,et al. The role of foehn in the formation of heavy air pollution events in Urumqi,China[J]. J Geophys Res 2015 Atmos,120:5371-5384.
    [23]赵克明,李霞,卢新玉,等.峡口城市冬季大气污染的时空分布特征分析[J].干旱区地理,2014,37(6):1108-1118.
    [24]李霞,王磊,任泉.乌鲁木齐风廓线雷达探测能力评估[J].沙漠与绿洲气象,2016,10(1):9-18.
    [25] Holzworth,G C. Mixing depths,wind speeds and air pollution potential for selected locations in the United States[J]. J Appl Meteor,1967,6:1039-1044.
    [26]王式功,姜大膀,杨德保,等.兰州市区最大混合层厚度变化特征分析[J].高原气象,2000,19(3):363-370.
    [27]赵克明,李霞,阿不力米提江·阿布力克木,等.乌鲁木齐大气颗粒物的时空分布规律[J].干旱区地理,2018,41(2):264-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700