用户名: 密码: 验证码:
广义快速分解潮流计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generalized Fast Decoupled Load Flow Algorithm
  • 作者:陈艳 ; 张智 ; 徐井强 ; 周勐 ; 余锐 ; 凌亮
  • 英文作者:CHEN Yanbo;ZHANG Zhi;XU Jingqiang;ZHOU Meng;YU Rui;LING Liang;School of Electrical and Electronic Engineering,State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University;Sichuan Hydropower Group Gaoxian County Power Co.Ltd.;China Electric Power Research Institute;Southwest Branch of State Grid Corporation of China;
  • 关键词:快速分解潮流算法 ; 牛顿—拉夫逊法 ; 配电网 ; 高阻抗比 ; 潮流算法
  • 英文关键词:fast decoupled load flow algorithm;;Newton-Raphson method;;distribution network;;high resistance-to-reactance ratio;;load flow algorithm
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:华北电力大学电气与电子工程学院新能源电力系统国家重点实验室;四川能投高县电力有限公司;中国电力科学研究院有限公司;国家电网公司西南分部;
  • 出版日期:2019-03-25
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.652
  • 基金:国家自然科学基金资助项目(51777067);; 新能源电力系统国家重点实验室开放课题研究项目(LAPS18003)~~
  • 语种:中文;
  • 页:DLXT201906011
  • 页数:10
  • CN:06
  • ISSN:32-1180/TP
  • 分类号:130-139
摘要
快速分解潮流(FDLF)算法在当今的国内外电网调度控制中心和规划部门得到了广泛应用。在大部分情况下FDLF算法具有很高的计算效率,但对于高阻抗比的输电网和配电网,FDLF法的数学基础不再成立,其收敛性和计算效率均变差,因而FDLF无法适用于高阻抗比的输电网和配电网。针对以上问题,文中通过对节点注入有功功率/无功功率进行变换,进而得到类有功注入功率/类无功注入功率,两者具有更好的解耦特性,且这种解耦特性与阻抗比的值无关;在此基础上提出一种广义快速分解潮流(GFDLF)算法。GFDLF算法只需基于一个前提条件,而传统的FDLF算法则需要3个前提条件,因此GFDLF算法对输电网和配电网(包括高阻抗比网络)均具有良好的适应性。算例仿真验证了所提方法具有良好的收敛性和较高的计算效率。
        Fast decoupled load flow(FDLF)algorithm has been widely used in the domestic and international power dispatch and control center and planning department.The FDLF algorithm usually has very high computational efficiency.But for the transmission networks and distribution networks with high resistance-to-reactance ratios,the mathematical basis of the FDLF algorithm is no longer satisfied,and its convergence and computational efficiency are poor.So the FDLF algorithm cannot be applied to the transmission networks and distribution networks with high resistance-to-reactance ratios.The above problem is addressed by transforming active/reactive power at buses so that they can be classified as quasi active/reactive power at buses,which have better decoupling characteristics.And this decoupling property is independent of the value of resistance-to-reactance ratio.On this basis,ageneralized fast decoupled load flow(GFDLF)algorithm is proposed.The GFDLF algorithm is based on only one assumption,rather than three assumptions used in the conventional FDLF algorithm.As a result,the GFDLF algorithm has good adaptability to both power transmission network and distribution network(including the network with high resistance-to-reactance ratio).Simulation results show the effectiveness and efficiency of the proposed method.
引文
[1]TINNEY W F,HART C E.Power flow solution by Newton’s method[J].IEEE Transactions on Power Apparatus and Systems,1967,PAS-86(11):1449-1460.
    [2]TINNEY W F,WALKER J W.Direct solution of sparse network equations by optimally ordered triangular factorization[J].Proceedings of the IEEE,1967,55(11):1801-1809.
    [3]MOURA A A F,MOURA A P.Newton-Raphson on decoupled load flow with constant matrices of conductance and susceptance[C]//9th IEEE International Conference on Industry Applications,November 8-10,2010,Sao Paulo,Brazil:1-6.
    [4]YANG Hui,WEN Fushuan,WANG Liping.Newton-Raphson on power flow algorithm and Broyden method in the distribution system[C]//IEEE 2nd International Power and Energy Conference,December 1-3,2008,Johor Bahru,Malaysia:1613-1618.
    [5]LAGACE P J,VUONG A H,KAMWA I.Improving power flow convergence by Newton Raphson with a LevenbergMarquardt method[C]//IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,July 20-24,2008,Pittsburgh,USA:1-6.
    [6]刘洋,周家启,谢开贵,等.预条件处理CG法大规模电力系统潮流计算[J].中国电机工程学报,2006,26(7):89-94.LIU Yang,ZHOU Jiaqi,XIE Kaigui,et al.The preconditioned CG method for large scale power flow solution[J].Proceedings of the CSEE,2006,26(7):89-94.
    [7]李传栋,房大中,杨金刚,等.大规模电网并行潮流算法[J].电网技术,2008,32(7):34-39.LI Chuandong,FANG Dazhong,YANG Jingang,et al.New research on parallel power-flow calculation for large-scale power system[J].Power System Technology,2008,32(7):34-39.
    [8]谢开贵,张怀勋,胡博,等.大规模电力系统潮流计算的分布式GESP算法[J].电工技术学报,2010,25(6):89-95.XIE Kaigui,ZHANG Huaixun,HU Bo,et al.Distributed algorithm for power flow of large-scale power systems using the GESP technique[J].Transactions of China Electrotechnical Society,2010,25(6):89-95.
    [9]李智欢,韩云飞,苏寅生,等.基于节点类型转换的潮流收敛性调整方法[J].电力系统自动化,2015,39(7):188-193.LI Zhihuan,HAN Yunfei,SU Yinsheng,et al.A convergence adjustment method of power flow based on node type switching[J].Automation of Electric Power Systems,2015,39(7):188-193.
    [10]唐灿,董树锋,任雪桂,等.用于迭代法潮流计算的改进Jacobi预处理方法[J].电力系统自动化,2018,42(12):81-86.DOI:10.7500/AEPS20170307005.TANG Can,DONG Shufeng,REN Xuegui,et al.Improved Jacobi pre-treatment method for solving iterative power flow calculation[J].Automation of Electric Power Systems,2018,42(12):81-86.DOI:10.7500/AEPS20170307005.
    [11]彭慧敏,李峰,袁虎玲,等.大规模电网运行方式调整潮流计算及病态诊断[J].电力系统自动化,2018,42(3):136-142.DOI:10.7500/AEPS20170406004.PENG Huimin,LI Feng,YUAN Huling,et al.Power flow calculation and condition diagnosis for operation mode adjustment of large-scale power systems[J].Automation of Electric Power Systems,2018,42(3):136-142.DOI:10.7500/AEPS20170406004.
    [12]严正,范翔,赵文恺,等.自适应Levenberg-Marquardt方法提高潮流计算收敛性[J].中国电机工程学报,2015,35(8):1909-1918.YAN Zheng,FAN Xiang,ZHAO Wenkai,et al.Improving the convergence of power flow calculation by a self-adaptive Levenberg-Marquardt method[J].Proceedings of the CSEE,2015,35(8):1909-1918.
    [13]TYLAVSKY D J,CROUCH P E,JARRIEL L F,et al.The effects of precision and small impedance branches on power flow robustness[J].IEEE Transactions on Power Apparatus and Systems,1994,9(1):6-14.
    [14]STOTT B.Decoupled Newton load flow[J].IEEETransactions on Power Apparatus and Systems,1972,PAS-91(5):1955-1957.
    [15]STOTT B,ALSAC O.Fast decoupled load flow[J].IEEETransactions on Power Apparatus and Systems,1974,PAS-93(3):859-869.
    [16]彭谦,胡国新,张利.高斯-快速解耦潮流算法[J].电网技术,2009,33(3):53-56.PENG Qian,HU Guoxin,ZHANG Li.Gaussian-fast decoupling power flow algorithm[J].Power Grid Technology,2009,33(3):53-56.
    [17]RAJICIC D,BOSE A.A modification to the fast decoupled power flow for networks with high R/X ratios[J].IEEETransactions on Power Apparatus and Systems,2002,3(2):743-746.
    [18]WANG L,XIANG P,WANG S,et al.Novel decoupled power flow[J].IEE Proceedings C-Generation,Transmission and Distribution,1990,137(1):1-7.
    [19]DYLIACCO T E,RANARAO K A.Theoretical study of the convergence of fast decoupled load flow[J].IEEE Transactions on Power Apparatus and Systems,1977,PAS-96(1):268-275.
    [20]DECKMANN S,PIZZOLANTE A,MONTICELLI A,et al.Numerical testing on power system load flow equivalents[J].IEEE Transactions on Power Apparatus and Systems,1980,PAS-99(6):2292-2300.
    [21]TORTELLI O L,LOURENCO E M,GARCIA A V,et al.Fast decoupled power flow to emerging distribution systems via complex pu normalization[J].IEEE Transactions on Power Systems,2015,30(3):1351-1358.
    [22]张树卿,童陆园,洪潮,等.基于线性功率-电压方程的快速潮流计算方法[J].电力自动化设备,2013,33(6):37-41.ZHANG Shuqing,TONG Luyuan,HONG Chao,et al.Fast power flow calculation based on linear power-voltage equation[J].Electric Power Automation Equipment,2013,33(6):37-41.
    [23]陈醒,卫志农,沈海平,等.基于双解耦的配电网三相不平衡快速潮流算法[J].电力自动化设备,2017,37(10):63-70.CHEN Xing,WEI Zhinong,SHEN Haiping,et al.Threephase unbalanced fast power flow calculation algorithm based on double decoupling for distribution network[J].Electric Power Automation Equipment,2017,37(10):63-70.
    [24]陈艳波,陈锐智,王若兰.一种广义快速分解潮流方法:CN201711174527.6[P].2017-11-22.CHEN Yanbo,CHEN Ruizhi,WANG Ruolan.A generalized fast decoupled load flow method:CN201711174527.6[P].2017-11-22.
    [25]张伯明,陈寿孙,严正.高等电力网络分析[M].2版.北京:清华大学出版社,2007.ZHANG Boming,CHEN Shousun,YAN Zheng.Advanced power network analysis[M].2nd ed.Beijing:Tsinghua University Press,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700