用户名: 密码: 验证码:
一锅法合成在可见光下具有高效降解草甘膦的牡丹状Bi_2S_3/BiVO_4(040)复合光催化剂(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-pot synthesis of peony-like Bi_2S_3/BiVO_4(040) with high photocatalytic activity for glyphosate degradation under visible light irradiation
  • 作者:唐强勇 ; 霍蕊 ; 区烺颖 ; 罗秀丽 ; 吕嫣然 ; 徐悦华
  • 英文作者:Qiang-Yong Tang;Rui Huo;Lang-Ying Ou;Xiu-Li Luo;Yan-Ran Lv;Yue-Hua Xu;College of Materials and Energy, South China Agricultural University;
  • 关键词:BiVO4(040) ; Bi2S3/BiVO4(040) ; 异质结 ; 光催化 ; 草甘膦
  • 英文关键词:BiVO4(040);;Bi2S3/BiVO4(040);;Heterostructure;;Photocatalytic;;Glyphosate
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:华南农业大学材料与能源学院;
  • 出版日期:2019-03-18
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 语种:英文;
  • 页:CHUA201904014
  • 页数:10
  • CN:04
  • ISSN:21-1601/O6
  • 分类号:138-147
摘要
草甘膦是一种广谱除草剂, 2015年世界卫生组织国际癌症研究机构宣布草甘膦可能对人类致癌(2A类).单斜白钨矿型BiVO_4是一种较广泛研究的可见光光催化剂,但由于其光生电子和空穴迁移慢且容易复合而导致其光催化活性低.此外,有研究表明, BiVO_4的(040)晶面易于光生载流子分离,从而提高其光催化性能.Bi_2S_3的带隙能为1.27 eV,能被全可见光(400-800 nm)激发.Bi_2S_3的导带和价带位置与BiVO_4匹配,能形成异质结,从而提高其光催化活性.本文以EDTA为导向剂, L-半胱氨酸为硫源和软模板,采用一锅水热法制备了单斜白钨矿型BiVO_4,主要以(040)晶面为暴露面的Bi_2S_3/BiVO_4复合光催化剂.采用钼锑抗分光光度法测定草甘膦最终光催化降解产物之一PO_4~(3-)浓度,来计算草甘膦的降解率.X射线衍射(XRD)结果表明, Bi_2S_3/BiVO_4复合光催化剂只含Bi_2S_3和BiVO_4两种成分,没有其他晶相存在.场发射扫描电子显微镜(FESEM)显示,纯BiVO_4为片状结构,随着Bi_2S_3复合量增加, Bi_2S_3/BiVO_4的形貌为小片组成的牡丹状;但Bi_2S_3复合量进一步增加, Bi_2S_3/BiVO_4颗粒聚集严重.XRD, FESEM和高分辨透射电子显微镜(HRTEM)结果表明, Bi_2S_3复合量对Bi_2S_3/BiVO4样品(040)和(121)面晶生长及形貌有显著影响.Bi_2S_3的复合提高了Bi_2S_3/BiVO_4对可见光的吸收能力,经计算BiVO_4和Bi_2S_3带隙能分别为2.42和1.27 eV.随着Bi_2S_3复合量增加, Bi_2S_3/BiVO_4的光催化活性逐渐提高,至1 mmol时最高,对草甘膦的降解率为纯BiVO_4的2.2倍;但随着Bi2S3复合量进一步增加, Bi_2S_3/BiVO_4的光催化活性反而下降,可能是由于Bi_2S_3量太多包覆在BiVO_4表面而Bi_2S_3光催化性能很差的缘故.瞬态光电流测试和电化学阻抗谱的结果证实, Bi_2S_3/BiVO_4比BiVO_4具有更有效的电荷分离和更快的界面电荷转移能力.活性成分捕获剂实验表明,加入空穴捕获剂EDTA或电子捕获剂K_2Cr_2O_7完全抑制了草甘膦的降解.ESR谱证明羟基自由基·OH的存在.通过计算,得出BiVO_4的价带电位(EVB=2.87 eV vs. NHE)比Bi_2S_3 (EVB=1.69 eV vs. NHE)正,而Bi_2S_3 (EVB=0.42 eV vs. NHE)的导带电位比BiVO_4 (EVB=0.45 eV vs. NHE)负,能带匹配,即光生电子从Bi2S3迁移至Bi VO4,光生空穴从BiVO_4迁移至Bi_2S_3,从而将光生电子与空穴有效分离利用,达到提高其光催化性能的目的.Bi_2S_3/BiVO_4样品对草甘膦的光催化降解活性提高,主要是由于Bi_2S_3/BiVO_4异质结结构的形成提高了其对可见光的吸收能力和电子空穴对的分离效率.此外, Bi_2S_3/BiVO_4具有相对稳定性和可重复使用性.该方法简单,可制备用于光催化降解有机污染、光催化裂解水和光催化还原二氧化碳等不同领域的高活性复合光催化剂.
        In this work, samples consisting of BiVO_4 with exposed(040) facets coupled with Bi_2S_3(Bi_2S_3/BiVO_4) were prepared through a one-pot hydrothermal method, using ethylenediaminetetraacetic acid as directing agent and L-cysteine as sulfur source and soft template. X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy measurements indicated that the Bi_2S_3 content had a significant influence on the growth of(040) and(121) facets as well as on the morphology of the Bi_2S_3/BiVO_4 samples. When the Bi_2S_3 content reached 1 mmol, the Bi_2S_3/BiVO_4 samples exhibited a peony-like morphology. The results of transient photocurrent tests and electrochemical impedance spectroscopy measurements confirmed that a more effective charge separation and a faster interfacial charge transfer occurred in Bi_2S_3/BiVO_4 than Bi VO_4. The enhanced photocatalytic activity of the Bi_2S_3/BiVO_4 samples could be attributed to the improved absorption capability in the visible light region and the enhanced electron-hole pair separation efficiency due to the formation of the Bi_2S_3/BiVO_4 heterostructure. In addition, the Bi_2S_3/BiVO_4 samples showed relative stability and reusability. The simple method presented in this work could be used to fabricate composite photocatalysts with high activity for different applications, such as photocatalytic degradation of organic pollutants, photocatalytic splitting of water, and photocatalytic reduction of carbon dioxide.
引文
[1]K.Z.Guyton,D.Loomis,Y.Grosse,F.El Ghissassi,L.Benbrahim-Tallaa,N.Guha,C.Scoccianti,H.Mattock,K.Straif,Lancet Oncol.,2015,16,490-491.
    [2]D.Zhou,Y.Wu,X.N.Feng,Y.Chen,Z.P.Wang,T.Tao,D.B.Wei,Environ.Sci.Pollut.Res.,2014,21,6228-6233.
    [3]A.Fujishima,K.Honda,Nature,1972,238,37-38.
    [4]S.F.Chen,Y.Z.Liu,Chemosphere,2007,67,1010-1017.
    [5]G.W.Zhang,G.H.He,W.L.Xue,X.F.Xu,D.N.Liu,Y.H.Xu,J.Mol.Catal.A,2012,363-364,423-429.
    [6]G.R.Mangat Echavia,F.Matzusawa,N.Negishi,Chemosphere,2009,76,595-600.
    [7]L.H.Lin,Z.Y.Yu,X.C.Wang,Angew.Chem.Int.Ed.,2018,DOI:10.1002/anie.201809897 and 10.1002/ange.201809897
    [8]Y.J.Cui,Z.X.Ding,X.Z.Fu,X.C.Wang,Angew.Chem.Int.Ed.,2012,51,11814-11818.
    [9]Z.G.Yi,J.H.Ye,N.Kikugawa,T.Kako,S.X.Ouyang,H.Stuart-Williams,H.Yang,J.Y.Cao,W.J.Luo,Z.S.Li,Y.Liu,R.L.Withers,Nat.Mater.,2010,9,559-564.
    [10]G.Q.Tan,L.L.Zhang,H.J.Ren,S.S.Wei,J.Huang,A.Xia,ACS Appl.Mater.Interfaces,2013,5,5186-5193.
    [11]M.Shang,W.Z.Wang,L.Zhou,S.M.Sun,W.Z.Yin,J.Hazard.Mater.,2009,172,338-344.
    [12]Y.Yan,S.F.Sun,Y.Song,X.Yan,W.S.Guan,X.L.Liu,W.D.Shi,J.Hazard.Mater.,2013,250-251,106-114.
    [13]C.W.Kim,Y.S.Son,M.J.Kang,D.Y.Kim,Y.S.Kang,Adv.Energy Mater.,2016,1501754.
    [14]S.C.Wang,P.Chen,J.H.Yun,Y.X.Hu,L.Z.Wang,Angew.Chem.Int.Ed.,2017,56,8500-8504.
    [15]L.Chen,J.X.Wang,D.W.Meng,Y.L.Xing,C.Wang,F.Li,Y.Q.Wang,X.L.Wu,Mater.Lett.,2015,147,1-3.
    [16]M.Ou,S.P.Wan,Q.Zhong,S.L.Zhang,Y.Song,L.N.Guo,W.Cai,Y.L.Xu,Appl.Catal.B,2018,221,97-107.
    [17]W.Zhao,B.L.Dai,F.X.Zhu,X.Y.Tu,J.M.Xu,L.L.Zhang,S.Y.Li,D.Y.C.Leung,C.Sun,Appl.Catal.B,2018,229,171-180.
    [18]L.W.Ji,L.Lin,D.Yu,P.Gao,W.Wang,B.J.Liu,Mater.Lett.,2018,220,94-98.
    [19]Y.Li,X.Y.Xiao,Z.H.Ye,Ceram.Int.,2018,44,7067-7076.
    [20]R.Huo,X.L.Yang,J.Y.Yang,X.Li,S.Y.Yang,Y.H.Xu,Mater.Res.Bull.,2018,98,225-230.
    [21]Y.Liu,J.J.Kong,J.L.Yuan,W.Zhao,X.Zhu,C.Sun,J.M.Xie,Chem.Eng.J.,2018,331,242-254.
    [22]A.Malathi,V.Vasanthakumar,P.Arunachalam,J.Madhavan,M.A.Ghanem,J.Colloid Interf.Sci.,2017,506,553-563.
    [23]L.W.Shan,Y.T.Liu,J.J.Bi,J.Suriyaprakash,Z.Han,J.Alloys Compd.,2017,721,784-794.
    [24]B.Zhang,X.C.Ye,W.Y.Hou,Y.Zhao,Y.Xie,J.Phys.Chem.B,2006,110,8978-8985.
    [25]Y.W.Zhang,J.Q.Tian,H.Y.Li,L.Wang,X.Y.Qin,A.M.Asiri,A.O.Al-Youbi,X.P.Sun,Langmuir,2012,28,12893-12900.
    [26]S.K.Park,S.H.Yu,S.H.Woo,B.Quan,D.C.Lee,M.K.Kim,Y.E.Sung,Y.Z.Piao,Dalton Trans.,2013,42,2399-2405.
    [27]S.G.Liu,C.P.Mao,Y.B.Niu,F.L.Yi,J.K.Hou,S.Y.Lu,J.Jiang,M.W.Xu,C.M.Li,ACS Appl.Mater.Interfaces.,2015,7,25568-25573.
    [28]D.K.Ma,M.L.Guan,S.S.Liu,Y.Q.Zhang,C.W.Zhang,Y.X.He,S.M.Huang,Dalton Trans.,2012,41,5581-5586.
    [29]Z.Zhou,Y.H.Li,K.L.Lv,X.F.Wu,Q.Li,J.M.Luo,Mater.Sci.Semicon.Proc.,2018,75,334-341.
    [30]X.H.Gao,H.B.Wu,L.X.Zheng,Y.J.Zhong,Y.Hu,X.W.Lou,Angew.Chem.Int.Ed.,2014,53,5917-5921.
    [31]W.Y.Wang,X.W.Wang,C.X.Zhou,B.Du,J.X.Cai,G.Feng,R.B.Zhang,J.Phys.Chem.C,2017,121,19104-19111.
    [32]J.Z.Wang,J.Jin,X.G.Wang,S.N.Yang,Y.L.Zhao,Y.W.Wu,S.Y.Dong,J.Y.Sun,J.H.Sun,J.Colloid Interf.Sci.,2017,505,805-815.
    [33]D.Q.Zhao,W.W.Wang,W.J.Zong,S.M.Xiong,Q.Zhang,F.Y.Ji,X.Xu,Materials.,2017,10,891.
    [34]B.Weng,X.Zhang,N.Zhang,Z.R.Tang,Y.J.Xu,Langmuir.,2015,31,4314-4322.
    [35]Z.J.Zhang,W.Z.Wang,L.Wang,S.Sun,ACS Appl.Mater.Interfaces,2012,4,593-597.
    [36]Y.H.Jeong,J.H.Jung,E.Choi,S.Han,A.I.Begley,S.J.Yoo,J.H.Jang,H.J.Kim,S.W.Nam,K.Y.Lee,J.Power Sources,2015,299,480-484.
    [37]Y.R.Lv,R.Huo,S.Y.Yang,M.J.Chen,Y.Q.Liu,Y.H.Xu,Sep.Purif.Technol.,2018,197,281-288.
    [38]B.P.Xie,H.X.Zhang,P.X.Cai,R.L.Qiu,Y.Xiong,Chemosphere,2006,63,956-63.
    [39]W.Teng,X.Y.Li,Q.D.Zhao,J.J.Zhao,D.K.Zhang,Appl.Catal.B,2012,125,538-545.
    [40]X.L.Luo,C.J.Liu,M.J.Chen,S.S.Zhang,Y.H.Xu,Mater.Res.Bull.,2017,94,428-434.
    [41]Y.F.Ma,H.Q.Jiang,X.C.Zhang,J.B.Xing,Y.S.Guan,Ceram.Int.,2014,40,16485-16493.
    [42]W.Liu,G.S.Zhao,Y.Zhang,M.Dong,M.Z.An,L.M.Chang,Mater.Lett.,2016,170,183-186.
    [43]J.Q.Li,J.Zhou,H.J.Hao,Z.F.Zhu,Mater.Lett.,2016,170,163-166.
    [44]N.Tian,H.W.Huang,Y.He,Y.X.Guo,T.R.Zhang,Y.H.Zhang,Dalton Trans.,2015,44,4297-4307.
    [45]G.G.Zhang,M.W.Zhang,X.Q.Qiu,S.Lin,X.C.Wang,Adv.Mater.,2014,26,805-809.
    [46]L.Chen,D.W.Meng,X.L.Wu,A.Q.Wang,J.X.Wang,Y.Q.Wang,M.H.Yu,J.Phys.Chem.C,2016,120,18548-18559.
    [47]G.H.Dong,L.P.Yang,F.Wang,L.Zang,C.Y.Wang,ACS Catal.,2016,6,6511-6519.
    [48]K.Wangkawong,S.Phanichphant,D.Tantraviwat,B.Inceesungvorn,J.Colloid Interf.Sci.,2015,454,210-215.
    [49]Y.P.Su,S.Li,D.S.He,D.F.Yu,F.Liu,N.N.Shao,Z.T.Zhang,ACSSustain.Chem.Eng.,2018,6,11989-11998.
    [50]J.Ren,S.X.Ouyang,H.R.Chen,N.Umezawa,D.Lu,D.F.Wang,H.Xu,J.H.Ye,Appl.Catal.B,2015,168,243-249.
    [51]Y.X.Li,S.X.Ouyang,H.Xu,X.Wang,Y.P.Bi,Y.F.Zhang,J.H.Ye,J.Am.Chem.Soc.,2016,138,13289-13297.
    [52]J.Y.Sun,Y.P.Guo,Y.Wang,D.Cao,S.C.Tian,K.Xiao,R.Mao,X.Zhao,Chem.Eng.J.,2018,332,312-320.
    [53]W.W.He,H.M.Jia,D.F.Yang,P.Xiao,X.L.Fan,Z.Zheng,H.K.Kim,W.G.Wamer,J.J.Yin,ACS Appl.Mater.Interfaces,2015,7,16440-16449.
    [54]Z.Li,C.Kong,G.X.Lu,J.Phys.Chem.C,2016,120,56-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700