用户名: 密码: 验证码:
原位合成TiB_2/Fe复合材料的高温氧化行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High temperature oxidation behavior of in-situ synthesized TiB_2/Fe composites
  • 作者:罗军明 ; 李乐乐 ; 黄俊 ; 徐吉林
  • 英文作者:LUO Junming;LI Lele;HUANG Jun;XU Jilin;School of Materials Science and Engineering,Nanchang Hangkong University;
  • 关键词:原位合成 ; 微波烧结 ; TiB2 ; Fe ; 复合材料 ; 高温氧化
  • 英文关键词:in situ synthesis;;microwave sintering;;TiB2;;Fe;;composites;;high temperature oxidation
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:南昌航空大学材料科学与工程学院;
  • 出版日期:2018-05-31 09:38
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51764041);; 江西省铜钨新材料重点实验室(2011-TW-08)
  • 语种:中文;
  • 页:FUHE201903016
  • 页数:8
  • CN:03
  • ISSN:11-1801/TB
  • 分类号:123-130
摘要
采用微波烧结技术原位生成TiB_2/Fe复合材料,研究其在500℃、600℃与700℃空气中的恒温氧化行为,并对氧化膜的表面、截面形貌及相组成进行了分析。结果表明:TiB_2/Fe复合材料由TiB_2、Fe_2B和α-Fe三种物相组成。随着氧化温度的升高,TiB_2/Fe复合材料的氧化增重明显增大,均呈现抛物线型规律,在500℃时,其氧化产物主要为Fe_2O_3和Fe3O4,而700℃时,其氧化物为Fe_2O_3、TiO2、Fe9TiO15及少量Fe3BO6组成。相同温度下,随着TiB_2含量增加,TiB_2/Fe复合材料氧化物粒径、氧化增重和氧化层厚度均减小,氧化激活能增大,其抗氧化性能也越好。
        The in-situ TiB_2/Fe composites were synthesized by microwave sintering.The isothermal oxidation behavior of TiB_2/Fe composites was investigated in air at 500℃,600℃and 700℃.The surface,cross-sectional morphology and phase composition of the oxide films were also analyzed.The results show that the in-situ TiB_2/Fe composites are composed of TiB_2,Fe_2B andα-Fe phases.With the oxidation temperatures increasing,the oxidation weight of TiB_2/Fe composites increases obviously and shows the law of parabolic.At 500℃,the main oxidation products of the composites are Fe_2O_3 and Fe_3O_4.At 700℃,the oxides are composed of Fe_2O_3,TiO2,Fe9 TiO15 and Fe3 BO6.With the increase of TiB_2 contents,the oxide particle size,oxidation mass and oxide layer thickness of TiB_2/Fe composites decrease at the same temperature,and the oxidation activation energy increases,which leads to the improvement of the oxidation resistance of TiB_2/Fe composites.
引文
[1]DAS K,BANDYOPADHYAY T K,DAS S.A review on the various synthesis routes of TiC reinforced ferrous based composites[J].Journal of Materials Science,2002,37(18):3881-3892.
    [2]林阳军,徐小玉,朱国女.V(C,N)颗粒增强铁基复合材料的研究[J].热加工工艺,2009,38(20):102-105.LIN Y J,XU X Y,ZHU G N.Study on iron matrix composites reinforced by V(C,N)particles[J].Hot Working Technology,2009,38(20):102-105(in Chinese).
    [3]LV P,SUN X,CAI J,et al.Microstructure and high temperature oxidation resistance of nickel base alloy GH4169irradiated by high current pulsed electron beam[J].Surface&Coatings Technology,2016,309:401-409.
    [4]ZHANG Q,CHANG Y,GU L,et al.Study of microstructure of nickel-based superalloys at high temperatures[J].Scripta Materialia,2017,126:55-57.
    [5]吴小红,罗军明,黄俊,等.微波烧结TiC/Ti6Al4V复合材料的高温氧化行为[J].复合材料学报,2017,34(1):135-141.WU X H,LUO J M,HUANG J,et al.High temperature oxidation behavior of microwave sintered TiC/Ti6Al4Vcomposites[J].Acta Materiae Compositae Sinica,2017,34(1):135-141(in Chinese).
    [6]张小安,金志浩,张振国,等.反应熔渗SiC/MoSi2和SiC/Mo(Si,Al)2复相材料抗氧化行为[J].复合材料学报,2010,27(1):104-108.ZHANG X A,JIN Z H,ZHANG Z G,et al.Inoxidizable behavior of SiC reinforced MoSi2composite prepared by infiltration method[J].Acta Materiae Compositae Sinica,2010,27(1):104-108(in Chinese).
    [7]李苏,李俊寿,赵芳,等.TiB2材料的研究现状[J].材料导报,2013,23(7):34-38.LI S,LI J S,ZHAO F,et al.Advance in research of TiB2materials[J].Materials Review,2013,23(7):34-38(in Chinese).
    [8]王天剑,汤春峰,曲选辉,等.原位合成TiN颗粒强化铁基合金粉末[J].粉末冶金技术,2009,27(3):163-169.WANG T J,TANG C F,QU X H,et al.Iron base alloy powder reinforced by in-situ synthesis TiN particulates[J].Power Metallurgy Technology,2009,27(3):163-169(in Chinese).
    [9]陈新华,翟洪祥,王文娟.原位反应法制备Cr2AlC-Fe基复合材料[J].硅酸盐学报,2013,41(3):309-313.CHEN X H,ZHAI H X,WANG W J.Fabrication of Cr2AlC-Fe based composites by in-situ reaction technique[J].Journal of the Chinese Ceramic,2013,41(3):309-313(in Chinese).
    [10]ALBERTO O,LAGOS M A,SCOCCHI G,et al.Spark plasma sintering of ZrB2-SiC composites with in-situ reaction bonded silicon carbide[J].Ceramics International,2014,40(1):821-826.
    [11]刘均海,黄继华,宋桂香.TiC/耐热钢钢结硬质合金原位反应合成研究[J].粉末冶金技术,2005,23(3):199-203.LIU J H,HUANG J H,SONG G X.A study on in situ reactive synthesis of TiC/heat resistant steel-steel bonded carbides[J].Power Metallurgy Technology,2005,23(3):199-203(in Chinese).
    [12]李明喜,刘进,李殿凯.VC对铁基合金喷焊层组织与耐磨性影响[J].材料热处理学报,2015,36(11):214-218.LI M X,LIU J,LI D K.Effect of VC on microstructure and wear resistance of Fe-based alloy coatings by plasma transferred arc welding[J].Transactions of Metal Heat Treatment,2015,36(11):214-218(in Chinese).
    [13]王皓,傅正义,袁润章.TiB2-xFe体系SHS合成的热力学计算[J].武汉工业大学学报,1997,19(1):4-7.WANG H,FU Z Y,YUAN R Z.Thermodynamic calculations of TiB2-xFe system by SHS synthetic[J].Journal of Wuhan University of Technology,1997,19(1):4-7(in Chinese).
    [14]CLARK D E,FOLZ D C,WEST J K.Processing materials with microwave energy[J].Materials Science and Engineering,2000,A287(2):153-158.
    [15]罗军明,魏峥,苏倩,等.TiC含量对微波烧结钢结硬质合金组织及性能影响[J].材料热处理学报,2012,33(7):116-121.LUO J M,WEI Z,SU Q,et al.Effect of TiC content on microstructure and properties of steel-cemented carbide[J].Transactions of Metal Heat Treatment,2012,33(7):116-121(in Chinese).
    [16]孙国进,胡士廉,苏广才.原位合成TiCp/Fe复合材组织结构和力学性能的研究[J].热加工工艺,2015,44(22):75-81.SUN G J,HU S L,SU G C.Research on microstructure and mechanical properties of TiCP/Fe composite[J].Hot Working Technology,2015,44(22):75-81(in Chinese).
    [17]刘海峰,刘耀辉,于思荣.原位合成VC颗粒增强钢基复合材料组织及其形成机理[J].复合材料学报,2001,18(4):58-63.LIU H F,LIU Y H,YU S R.The microstructure of in situ VC particulates reinforced matrix steel composite and its forming mechanism[J].Acta Materiae Compositae Sinica,2001,18(4):58-63(in Chinese).
    [18]杨瑞成,陈奎,王凯旋,等.WC/NiCrMo钢基复合材料的断裂行为及特征[J].复合材料学报,2005,22(3):130-134.YANG R C,CHEN K,WANG K X,et al.Fracture behaviors and characteristics of WC/NiCrMo steel matrix composites[J].Acta Materiae Compositae Sinica,2005,22(3):130-134(in Chinese).
    [19]赵立新.TiCx、TiCx-TiB2颗粒增强钢基复合材料高温磨损性能[D].长春:吉林大学,2010.ZHAO L X.High temperature wear properties of the TiCx,TiCx-TiB2particulate reinforced steel matrix composites[D].Changchun:Jilin University,2010(in Chinese).
    [20]王溪,胡汉起,史京明,等.WCP/Fe-Ni钢基复合材料的抗热疲劳特性[J].钢铁研究学报,1998,10(5):44-48.WANG X,HU H Q,SHI J M,et al.Behavior of thermal fatigue resistance of WCP/Fe-Ni steel matrix composites[J].Journal of Iron and Steel Research,1998,10(5):44-48(in Chinese).
    [21]蹇福全,何高风,于海.添加羰基铁粉提高铁基合金烧结密度的研究[J].粉末冶金技术,1994,12(4):278-281.JIAN F Q,HE G F,YU H.Research on iron-based alloy sintered density by added carbonyl iron[J].Power Metallurgy Technology,1994,12(4):278-281(in Chinese).
    [22]贾蔚菊,曾卫东,刘建荣,等.Ti60高温钛合金氧化行为研究[J].稀有金属材料与工程,2010,39(5):781-786.JIA W J,ZENG W D,LIU J R,et al.Study on oxidation behavior of Ti60high temperature titanium Alloy[J].Rare Metal Materials and Engineering,2010,39(5):781-786(in Chinese).
    [23]HUANG L J,GENG L,FU Y,et al.Oxidation behavior of in situ TiCP/Ti6Al4Vcomposite with self-assembled network microstructure fabricated by reaction hot pressing[J].Corrosion Science,2013,69(2):175-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700