用户名: 密码: 验证码:
自修复型超疏水材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in Self-healing Superhydrophobic Surfaces
  • 作者:周莹 ; 肖利吉 ; 姚丽 ; 徐祖顺
  • 英文作者:ZHOU Ying;XIAO Liji;YAO Li;XU Zushun;Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials,Hubei University;Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education,Hubei University;
  • 关键词:超疏水 ; 自修复 ; 多级微-纳结构 ; 低表面能组分
  • 英文关键词:superhydrophobicity;;self-healing;;hierarchical micro/nanostructures;;low-surface-energy components
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:湖北大学有机化工新材料湖北省协同创新中心;湖北大学功能材料绿色制备与应用教育部重点实验室;
  • 出版日期:2019-04-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51503059)~~
  • 语种:中文;
  • 页:CLDB201907020
  • 页数:9
  • CN:07
  • ISSN:50-1078/TB
  • 分类号:159-167
摘要
超疏水材料是指水在其表面的接触角大于150°、滚动角小于10°的材料。超疏水材料之所以表现出超强的疏水性能,一方面是由于低表面自由能物质的存在,使得水滴难以在材料表面铺展;另一方面是由于丰富的微-纳多级结构使空气在固液两相之间形成"气垫层",进一步减小固液接触面。上述两个要素共同作用,可赋予超疏水材料自清洁、表面防污、防腐蚀、防覆冰、减阻等功能。此外,还可以制备具有抗黏附、油水分离、集水功能的超疏水材料,这些吸引了人们的广泛关注。然而,超疏水材料在实际应用中不可避免地受到诸如化学腐蚀、刮擦磨损等外界环境的影响,容易造成低表面能组分的缺失或微-纳多级结构的破坏,导致超疏水性能丧失。针对这一问题,科学家们提出构筑具备长效耐久性的超疏水材料,主要有两种方法:(1)设计具有高耐磨性的超疏水材料,尽可能减小摩擦磨损对表面组分或结构的破坏;(2)构筑具备自修复性能的超疏水材料,及时修复摩擦磨损对表面组分或结构造成的破坏,从而恢复材料的超疏水性能。由于方法一需要引入高耐磨物质,在材料的选择方面有一定的局限性,而方法二的普适性更强,因此成为了现阶段研究的热点。目前,自修复型超疏水材料的构筑主要有两种途径。一种途径是构建自动补足低表面能组分的超疏水体系。对于单纯疏水组分的缺失,只需及时补充表面的低表面能组分,利用其自发向材料表面迁移重排的特性,即可实现超疏水性的修复,如在材料本体中接枝含氟链段,以材料的孔隙或微胶囊作为低表面能物质的贮存位点等。另一种途径是构筑能重建多级微-纳结构的超疏水体系。如果材料受到严重破坏,化学组分与表面粗糙结构同时受损,则可通过材料的结构设计同时实现缺失组分的补充和形貌结构的重建,例如,在材料中引入疏水化粒子、构建一体化涂层、设计表层剥离型材料、利用形状记忆高分子的"记忆效应"等方法。本文归纳了自修复型超疏水材料近年来的研究成果,对各类自修复型超疏水体系的设计思路、超疏水效果以及修复机理等进行了介绍,阐述了该领域当前的挑战和未来的发展前景,以期为制备应用广泛的长效型超疏水材料提供参考。
        Superhydrophobic materials are defined as a kind of materials with water static contact angle of 150° or higher and sliding angle of less than 10°. The super hydrophobic properties of the materials are derived from two aspects.On the one hand,it is difficult for water droplets to spread on the surface of the materials because of the existence of low-surface-energy substances. On the other hand,the rich hierarchical micro/nanostructures enable the formation of an"air cushion"between the solid and liquid phases,which further reduces the solid-liquid interface. Accordingly,the superhydrophobic materials are endowed with special functions like selfcleaning,anti-fouling,corrosion resistant,anti-icing,drag-reduction,anti-adhesion,oil/water separation,water directional collection,etc. Additionally,materials with anti-adhesion,oil-water separation,water collection can be also achieved based on superhydrophobic materials.Unfortunately,superhydrophobic materials are highly susceptible to environmental hazards such as chemical etching,scratch and abrasion,resulting in loss of low-surface-energy components or destruction of hierarchical structures,eventually leads to the decline or loss of super water-repellency. To solve these problems,durable superhydrophobic materials are proposed,which can be achieved mainly by two approaches,one is to design superhydrophobic materials with high abrasive resistance,in purpose of minimizing friction or wear damage to chemical components or micro-nanoscale topography. The other is to construct self-healing superhydrophobic materials,for the sake of repairing the damage caused by friction and wear on the surface component or structure in time,and restoring the superhydrophobic property of the material. The former shows certain limitation in selection of wearproof materials because of the demand for introducing high wear-resistant material. More attentions have been paid on the latter owing to its university.Generally,there are two approaches for fabrication of self-healing superhydrophobic materials. Specifically speaking,the first approach is constructing the superhydrophobic system capable of automatically complement the lost chemical composition by low-surface-energy substance. Concerning the absence of simple hydrophobic components timely supplement of surface components with low surface energy can realize the restoration of super-hydrophobicity by taking advantage of self-migration and rearrangement of this material on surface. For example,graft fluorinated groups to the bulk materials,take the micropores or microcapsules of the material as storage sites for low-surface-energy substances,etc. Another approach to repair severely crushed microstructures and damaged surface chemistry involves design of superhydrophobic system capable of reconstructing hierarchical micro/nanostructures,such as introducing hydrophobic particles,preparing all-in-one coatings,imitating snakeskin-like shedding,utilizing shape memory polymer,etc.In this review,we summarize the recent progress of self-healing superhydrophobic materials,elaborate the design idea,effect of hydrophobicity and self-healing mechanism of typical self-healing superhydrophobic systems. We also point out the challenges and prospects in self-healing superhydrophobic field,in order to provide references for fabrication of long-term superhydrophobic materials for widespread applications.
引文
1 Zheng Y M, Han D, Zhai J, et al. Applied Physics Letters, 2008, 92, 084106.
    2 Ferrari M, Benedetti A.Advances in Colloid and Interface Science, 2015, 222, 291.
    3 Lee J H, Zhang Z, Baek S, et al. Scientific Reports, 2016, 6, 24653.
    4 Wang N, Xiong D S, Deng Y L, et al.ACS Applied Materials & Interfaces, 2015, 7(11), 6260.
    5 Wang L, Gong Q H, Zhan S H, et al.Advanced Materials, 2016, 28, 7729.
    6 Zhang X Y, Li Z, Liu K S, et al.Advanced Functional Materials, 2013, 23, 2881.
    7 Sun Z Q, Liao T, Liu K S, et al.Small, 2014, 10(15), 3001.
    8 Parker A R, Lawrence C R.Nature, 2001, 414(6859), 33.
    9 Chen K L, Wu L, Zhou S X, et al.Macromolecular Rapid Communications, 2016, 37, 463.
    10 Gao L, McCarthy T J. Langmuir, 2006, 22(7), 2966.
    11 Li D, Guo Z. Journal of Colloid and Interface Science, 2017, 503, 124.
    12 Wu J X, Li J Y, Deng B, et al.Scientific Reports, 2013, 3(3), 2951.
    13 Wang Z H, Zuilhof H. Langmuir, 2016, 32(25), 6310.
    14 Chen S S, Li X, Li Y, et al. ACS Nano, 2015, 9(4), 4070.
    15 Liu M M, Hou Y Y, Li J, et al.Journal of Materials Chemistry A , 2017, 5, 19297.
    16 Wang H Y, Liu Z J, Zhang X G, et al.Advanced Materials Interfaces, 2016, 3(15), 1600040.
    17 Wu M C, Ma B H, Pan T Z, et al.Advanced Functional Materials, 2016, 26(4), 569.
    18 Zhou H, Wang H X, Niu H T, et al. Advanced Functional Materials, 2017, 27, 1604261.
    19 Wong T S, Kang S H, Tang S K Y, et al. Nature, 2011, 477, 443.
    20 Liu Q Z, Wang X L, Bo Y, et al.Langmuir, 2012, 28(13), 5845.
    21 Li Y, Li L, Sun J Q.Angewandte Chemie, 2010, 122, 6265.
    22 Li Y, Chen S S, Wu M C, et al. Advanced Materials, 2014, 26, 3344.
    23 Lin Y B, Shen Y Z, Liu A H, et al. Materials Design, 2016, 103, 300.
    24 Liu Y H, Liu Y P, Hu H Y, et al. The Journal of Physical Chemistry C, 2015, 119(13), 7109.
    25 Wang Q, Li J L, Zhang C L, et al. Journal of Materials Chemistry, 2010, 20, 3211.
    26 Chen K L, Gu K, Qiang S Y, et al.RSC Advances, 2017, 7, 543.
    27 Cong Y, Chen K L, Zhou S X, et al.Journal of Materials Chemistry A, 2015, 3(37), 19093.
    28 Deng X, Mammen L, Zhao Y F, et al.Advanced Materials, 2011, 23(26), 2962.
    29 Chen K L, Zhou S X, Yang S, et al. Advanced Functional Materials, 2015, 25, 1035.
    30 Kamegawa T, Shimizu Y, Yamashita H.Advanced Materials, 2012, 24, 3697.
    31 Xu Q F, Liu Y, Lin F J, et al.ACS Applied Materials Interfaces, 2013, 5, 8915.
    32 Rao Q Q, Chen K L, Wang C X. RSC Advances, 2016, 6, 53949.
    33 Huang M M, Zhang H, Yang J L.Corrosion Science, 2012, 65, 561.
    34 Wu G, An J, Tang X Z, et al.Advanced Functional Materials, 2014, 24, 6751.
    35 Xu Q, Zhang W W, Dong C B, et al. Journal of the Royal Society Interface, 2016, 13, 20160300.
    36 Ramakrishna S, Kumar S S S, Mathew D, et al.Scientific Reports, 2015, 5, 18510.
    37 Xue C H, Bai X, Jia S T.Scientific Reports, 2016, 6, 27262.
    38 Manna U, Lynn D M.Advanced Materials, 2013, 25, 5104.
    39 Choi H J, Choo S, Shin J H, et al. The Journal of Physical Chemistry C, 2016, 117(46), 24354.
    40 Zhang W W, Wang S L, Yu X Q, et al. Applied Physics Letters, 2016, 109(4), 667.
    41 Sahoo B N, Nanda S, Kozinski J A, et al.RSC Advances, 2017, 7, 15027.
    42 Zulfiqar U, Awais M, Hussain S Z, et al.Materials Letters, 2017, 192, 56.
    43 Li Y, Ge Bo, Men X H, et al. Composite Science and Technology, 2016, 125, 55.
    44 Puretskiy N, Stoychev G, Synytska G, et al.Langmuir, 2012, 28, 3679.
    45 Xu D, Mammen L, Butt H J, et al.Science, 2012, 335(6064), 67.
    46 Si Y F, Yang F C, Guo Z G.Journal of Colloid and Interface Science, 2017, 498, 182.
    47 Esteves A C C, Luo Y, van de Put M W P, et al. Advanced Functional Materials, 2014, 24, 986.
    48 H?nes R, Kondrashov V, Rühe J.Langmuir, 2017, 33 (19), 4833.
    49 Chen K L, Zhou S X, Wu L M.Chemical Communication, 2014, 50, 11891.
    50 Lv L, Cheng Z J, Zhang E S, et al. Small, 2017, 13, 1503402.
    51 Qian H C, Xu D, Du C W.Journal of Materials Chemistry A, 2017, 5, 2355.
    52 Wu M C, Li Y, An N. Advanced Functional Materials, 2016, 26, 6777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700