用户名: 密码: 验证码:
非共价键功能化石墨烯/碳纳米管负载型金属配合物催化剂及催化反应中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Non-covalent Functionalized Graphene/Carbon Nanotubes Supported Metal Complex Catalyst in Catalytic Reaction
  • 作者:汪兵洋 ; 郑治文 ; 赵康 ; 杨磊 ; 刘建华 ; 夏春谷
  • 英文作者:WANG Bing-yang;ZHENG Zhi-wen;ZHAO Kang;YANG Lei;LIU Jian-hua;XIA Chun-gu;Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:石墨烯 ; 碳纳米管 ; 金属配合物 ; 非共价键 ; 催化
  • 英文关键词:graphene;;carbon nanotubes;;metal complexes;;non-covalent bonds;;catalysis
  • 中文刊名:FZCH
  • 英文刊名:Journal of Molecular Catalysis(China)
  • 机构:中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室;中国科学院大学;
  • 出版日期:2019-03-11 15:31
  • 出版单位:分子催化
  • 年:2019
  • 期:v.33;No.183
  • 基金:国家自然科学基金项目(No.21673260;21373248);; 中国科学院“西部之光”—“西部青年学者”项目A类~~
  • 语种:中文;
  • 页:FZCH201901011
  • 页数:12
  • CN:01
  • ISSN:62-1039/O6
  • 分类号:96-107
摘要
碳材料(石墨烯、碳纳米管)具有超大的比表面积、高机械强度、化学稳定性、环境友好等特点,使得其作为一类新型非均相催化剂的优良载体,固载的金属配合物催化剂在许多催化反应中得到了广泛的应用.由于弱相互作用(π-π键、氢键、静电)功能化可以有效的保护碳材料的完整性,从而更好地发挥碳材料本身的优异性能.通过改变温度、溶液极性、外场力来调控非共价键功能化碳材料催化剂在催化反应中载体与催化剂的吸附与分离,使其具有均相催化剂优良的催化活性和多相催化剂的可回收性.综述了近些年来非共价键功能化石墨烯和碳纳米管固载的金属配合物催化剂在催化反应中的研究进展.
        Carbon materials(graphene and carbon nanotubes) are characterized by large specific surface area, high mechanical strength, chemical stability and environmental friendliness, which make them excellent supports for a new type of heterogeneous catalysts. The supported metal complexes catalysts have been widely used in many catalytic reactions. the functionalization of weak interaction(π-π interaction, hydrogen interaction, electrostatic interaction) can effectively protect the integrity of carbon materials, so as to better play the excellent performance of carbon materials themselves. By changing temperature, solution polarity and external field force, the adsorption and separation of support and catalyst of non-covalent functionalized carbon material catalyst in catalytic reaction can be regulated, so that it has excellent catalytic activity of homogeneous catalyst and recyclability of heterogeneous catalyst. Recent advances in non-covalent functionalized graphene and carbon nanotubes supported metal complex catalysts for catalytic reactions were reviewed.
引文
[1] Guibal E. Heterogeneous catalysis on chitosan-based materials: A review [J]. Prog Polym Sci, 2005, 30(1): 71-109.
    [2] Kang S, Ryu J, Kim J, et al. ZSM-5 supported cobalt catalyst for the direct production of gasoline range hydrocarbons by fischer-tropsch synthesis [J]. Catal Lett, 2011, 141(10): 1464-1471.
    [3] Munirasu S, Aggarwal R, Baskaran D. Highly efficient recyclable hydrated-clay supported catalytic system for atom transfer radical polymerization [J]. Chem Commun, 2009, 2009(30): 4518-4520.
    [4] Twigg M V, Spencer M S. Deactivation of supported copper metal catalysts for hydrogenation reactions [J]. Appl Catal A, 2001, 212(1): 161-174.
    [5] Yang H, Fang Z, Fu X Y, et al. A novel glass fiber-supported platinum catalyst for self-healing polymer compo- sites: Structure and reactivity [J]. Chin J Catal, 2007, 28(11): 947-952.
    [6] Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications [J]. Nano Res Lett, 2014, 9(1): 393-393.
    [7] Tasis D, Tagmatarchis N, Prato M, et al. Chemistry of carbon nanotubes [J]. Chem Rev, 2003, 106(3): 1105-1136.
    [8] Fan Yan-ru(范彦如), Zhao Zong-bin(赵宗彬), Wan Wu-bo(万武波), et al. Research progress of non-covalent functionalization and applications of graphene (石墨烯非共价键功能化及应用研究进展) [J]. Chem Ind Eng Prog (化工进展), 2011, 30(07): 1509-1520.
    [9] Guex L G, Sacchi B, Peuvot K F, et al. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry [J]. Nanoscale, 2017, 9(27): 9562-9571.
    [10] Konios D, Stylianakis M M, Stratakis E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide [J]. J Coll Inter Sci, 2014, 430: 108-112.
    [11] Zhang W H, He P P, Wu S, et al. Graphene oxide grafted hydroxyl-functionalized ionic liquid: A highly efficient catalyst for cycloaddition of CO2 with epoxides [J]. Appl Catal A, 2016, 509: 111-117.
    [12] Zhu J, Gu Y K, Wu J, et al. Aqueous grafting ionic li- quid on graphene oxide for CO2 cycloaddition [J]. Catal Lett, 2017, 147(2): 335-344.
    [13] Chen Song-cong(陈松丛), Han Feng (韩峰), Liu Jian-hua(刘建华), et al. Progress in catalysis of ionic liquid covalently functionalized graphene oxide supported catalysts (离子液体共价键功能化氧化石墨烯负载催化材料催化反应研究进展) [J]. J Mol Catal (China) (分子催化) , 2018, 32(4): 382-396.
    [14] Zhang Wen-zhi(张文治), Jian Zeng-yun(坚增运) , Wang Su-min(王素敏) , et al. Reserarch progresson noncovalent functionalization of carbon nanotubes (非共价键法改性碳纳米管的研究进展) [J]. Chin Polym Bull (China) (高分子通报), 2014, 2014(6): 6-15.
    [15] Song S, Wan C, Zhang Y. Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly(methyl methacrylate) [J]. RSC Adv, 2015, 5(97): 79947-79955.
    [16] Zhang Y, Mori T, Niu L, et al. Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion [J]. Ener Environ Sci, 2011, 4(11) : 4517-4521.
    [17] Yang X, Zhang X, Liu Z, et al. High-efficiency loadin- gand controlled release of doxorubicin hydrochloride on graphene oxide [J]. J Phys Chem C, 2008, 112(45): 17554-17558.
    [18] Patil A J, Vickery J L, Mann S, et al. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA [J]. Adv Mater, 2009, 21(31): 3159-3164.
    [19] Chang H, Wang G, Zheng Z, et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode [J]. Adv Funct Mater, 2010, 20(17): 2893-2902.
    [20] Wu Q, Xu Y, Shi G, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films [J]. ACS Nano, 2010, 4(4): 1963-1970.
    [21] Qian Yue-yue(钱悦月), Zhang Shu-peng(张树鹏), Gao Juan-juan(高娟娟), et al. Fabrication of graphene-based nanomaterials by non-covalent functionalization and their applications (石墨烯非共价功能化及其应用) [J]. Chem Bull (China)(化学通报) , 2015, 78(6): 497-504.
    [22] Crescenzo A D, Ettorre V, Fontana A, et al. Non-covalent and reversible functionalization of carbon nanotubes [J]. Beilstein J Nanotechnol, 2014, 5(1): 1675-1690.
    [23] Sabater S, Mata J A, Peris E. Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions [J]. ACS Catal, 2014, 4(6): 2038-2047.
    [24] Sabater S, Mata J A, Peris E. Immobilization of pyrene-tagged palladium and ruthenium complexes onto reduced graphene oxide: An efficient and highly recyclable catalyst for hydrodefluorination [J]. Organometallics, 2015, 34(7): 1186-1190.
    [25] Taher A, Lee K C, Kim D W, et al. Pyrene-tagged ionic liquids: Separable organic catalysts for SN2 fluorination [J]. Org Lett, 2017, 19(13): 3342-3345.
    [26] Nasrallah H, Germain S, Schulz E, et al. Non covalent immobilization of pyrene-tagged ruthenium complexes onto graphene surfaces for recycling in olefin metathesis reactions [J]. J Mol Catal A: Chem, 2016, 425: 136-146.
    [27] Peris E, Ruizbotella S. Immobilization of pyrene-adorned n-heterocyclic carbene complexes of rhodium(I) on reduced graphene oxide and study of their catalytic activity [J]. Chemcatchem, 2018, 10(8): 1874-1881.
    [28] Ruizbotella S, Peris E. Unveiling the importance of -stacking in borrowing-hydrogen processes catalysed by iridium complexes with pyrene tags [J]. Chem Eur J, 2015, 21(43): 15263-15271.
    [29] Wittmann S, Schatz A, Reiser O, et al. Cover Picture: A recyclable nanoparticle-supported palladium catalyst for the hydroxycarbonylation of aryl halides in water [J]. Angew Chem Inter Ed, 2010, 49(10): 1697-1697.
    [30] Jiang Y, Lu Y, Chen, W, et al. Enhanced catalytic performance of pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction [J]. ACS Catal, 2013, 3(6): 1263-1271.
    [31] Lee J S, Lee S H, Kim J, et al. Graphene-Rh-complex hydrogels for boosting redox biocatalysis [J]. J Mater Chem, 2013, 1(4): 1040-1044.
    [32] Xue T, Jiang S, Qu Y, et al. Graphene-supported hemin as a highly active biomimetic oxidation catalyst[J]. Angew Chem Inter Ed, 2012, 51(16): 3822-3825.
    [33] Yuan Ru-xun(原汝迅), Huang Guan(黄冠), Yan Chao(晏超), et al. Catalytic oxidation of methylbenzene over graphene oxide immobilized manganese tetra ( p-carboxylphenyl) porphyrin (氧化石墨烯固载四(对-羧基苯基)锰卟啉催化氧化甲苯) [J]. J Guangxi Univer ( Nat Sci Ed) (广西大学学报), 2018, 43(02): 752-762.
    [34] Yan Chao(晏超), Huang Guan(黄冠), Gao Yu-gui(高钰贵), et al. The performance of catalytic oxidize ethylbenzene over cobalt tetra ( p-nitrophenyl) porphyrin supported on graphene oxide (氧化石墨烯固载四(p-硝基苯基)钴卟啉催化氧化乙苯的性能) [J]. J Mol Catal (China) (分子催化) , 2018, 32(2): 163-173.
    [35] Li S, Guo S, Ma J, et al. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids [J]. J Hazard Mater, 2014, 270: 11-17.
    [36] Venturaespinosa D, Vicent C, Baya M, et al. Ruthenium molecular complexes immobilized on graphene as active catalysts for the synthesis of carboxylic acids from alcohol dehydrogenation [J]. Catal Sci Technol, 2016, 6(22): 8024-8035.
    [37] Zhu M, Li Z, Xiao B, et al. Surfactant assistance in improvement of photocatalytic hydrogen production with the porphyrin noncovalently functionalized graphene nanocomposite [J]. ACS Appl Mater Inter, 2013, 5(5): 1732-1740.
    [38] Miao D D, Li J J, Yang R, et al. Supersensitive electrochemical sensor for the fast determination of rutin in pharmaceuticals and biological samples based on poly ( diallyldimethylammonium chloride ) - functionalized graphene [J]. J Electro Chem, 2014, 732: 17-24.
    [39] Yang R, Miao D D, Liang Y M, et al. Ultrasensitive electrochemical sensor based on CdTe quantum dots-decorated poly (diallyldimethylammonium chloride )-functionalized graphene nanocomposite modified glassy carbon electrode for the determination of puerarin in biological samples [J]. Electrochim Acta, 2015, 173: 839-846.
    [40] Wen W, Bao T, Yang J, et al. A novel amperometric adenosine triphosphate biosensor by immobilizing graphene/dual-labeled aptamers complex onto poly ( o-phenylenediamine ) modified electrode [J]. Sens Actuators B, 2014, 191: 695-702.
    [41] Zhang S, Shao Y, Liao H, et al. Polyelectrolyte-induced reduction of exfoliated graphite oxide: A facile route to synthesis of soluble graphene nanosheets [J]. ACS Nano, 2011, 5(3): 1785-1791.
    [42] Li Y, Wang S, Wei J, et al. Lead adsorption on carbon nanotubes [J]. Chem Phys Lett, 2002, 357(34): 263-266.
    [43] Peigney A, Laurent C, Flahaut E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes [J]. Carbon, 2001, 39(4): 507-514.
    [44] Yang Q, Hou P, Bai S, et al. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes [J]. Chem Phys Lett, 2001, 345(1): 18-24.
    [45] Liu G, Wu B, Zhang J, et al. Controlled reversible immobilization of ru carbene on single-walled carbon nanotubes: A new strategy for green catalytic systems based on a solvent effect on π-π interaction [J]. Inor Chem, 2009, 48(6): 2383-2390.
    [46] Suzuki Y, Laurino P, Seeberger P H, et al. A capture-and-release catalytic flow system [J]. Helv Chim Acta, 2012, 95(12): 2578-2588.
    [47] Xing L, Xie J, Chen Y, et al. Simply modified chiral diphosphine: Catalyst recycling via non-covalent absorption on carbon nanotubes [J]. Adv Synth Catal, 2008, 350: 1013-1016.
    [48] Liu H, Chen J G, Wang C, et al. Immobilization of cyclometalated iridium complex onto multiwalled carbon nanotubes for dehydrogenation of indolines in aqueous solution [J]. Ind Eng Chem Res, 2017, 56(40): 11413-11421.
    [49] Vriamont C, Devillers M, Riant O, et al. Catalysis with gold complexes immobilised on carbon nanotubes by π-π stacking interactions: Heterogeneous catalysis versus the boomerang effect [J]. Chem Eur J, 2013, 19(36): 12009-12017.
    [50] Li F, Zhang B, Li X, et al. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes [J]. Angew Chem Inter Ed, 2011, 50(51): 12276-12279.
    [51] Tran P D, Goff A L, Heidkamp J, et al. Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake [J]. Angew Chem Inter Ed, 2011, 50(6): 1371-1374.
    [52] Kang P, Zhang S, Meyer T J, et al. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes [J]. Angew Chem Inter Ed, 2014, 53(33): 8709-8713.
    [53] Zhang L, Zhang W, Serp P, et al. Ethylene polymerization catalyzed by pyrene-tagged iron complexes: The po- sitive effect of π-conjugation and immobilization on multiwalled carbon nanotubes [J]. Chemcatchem, 2014, 6(5): 1310-1316.
    [54] Ding S N, Shan D, Cosnier S, et al. Single-walled carbon nanotubes noncovalently functionalized by ruthenium(II) complex tagged with pyrene: Electrochemical and electrogenerated chemiluminescence properties [J]. Chem Eur J, 2012, 18(37): 11564-11568.
    [55] Goff A L, Reuillard B, Cosnier S. A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes [J]. Langmuir, 2013, 29(27): 8736-8742.
    [56] Mcqueen E W, Goldsmith J I. Electrochemical analysis of single-walled carbon nanotubes functionalized with pyrene-pendant transition metal complexes [J]. J Am Chem Soc, 2009, 131(48): 17554-17556.
    [57] Goff A L, Moggia F, Debou N, et al. Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and π-stacking interactions and their relevance to glucose bio-sensing [J]. J Electroanal Chem, 2010, 641(1): 57-63.
    [58] Kharisov B I, Kharissova O V. Coordination and organometallic compounds in the functionalization of carbon nanotubes [J]. J Coord Chem, 2014, 67(3): 3769-3808.
    [59] Li C H, Ng A M C, Chan W K. Ruthenium complex containing block copolymer for the enhancement of carbon nanotube photoconductivity [J]. ACS Appl Mater Inter, 2012, 4(1): 74-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700