用户名: 密码: 验证码:
基于中速-高速摩擦实验研究含碳断层带的电导率特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A research on the conductivity characteristics of carbon-rich fault zones based on the middle-to high-velocity frictional experiments
  • 作者:韩明明 ; 杨晓 ; 姚路 ; 陈进宇 ; 马胜利
  • 英文作者:HAN MingMing;YANG XiaoSong;YAO Lu;CHEN JinYu;MA ShengLi;State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration;
  • 关键词:断层带电导率 ; 导电结构 ; 摩擦滑动 ; 碳质 ; 石墨
  • 英文关键词:Electrical conductivity of fault zone;;Conductive structure;;Frictional sliding;;Carbon;;Graphite
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国地震局地质研究所地震动力学国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:自然科学基金(41672197,41372202)项目;; 科技部地震行业科研经费专项(201508018)共同资助
  • 语种:中文;
  • 页:DQWX201903012
  • 页数:15
  • CN:03
  • ISSN:11-2074/P
  • 分类号:157-171
摘要
野外地质调查结果显示,断层带常富集碳质.断层带中碳的分布结构是影响断层带电导率特征的一种重要参数.本文在室温、室内湿度和2MPa正应力条件下,对不同石墨含量(3,5,6和7wt%)的石英-石墨混合断层泥模拟样品开展了滑动速率介于500μm·s-1~1m·s-1的摩擦实验及相应的电导率测量,以期研究断层运动对碳分布结构的影响以及断层带电性特征对碳含量及分布的响应情况.结果显示,摩擦滑动能够显著地改变样品的电性特征(电导率大小及其各向异性).在平行滑动面方向(径向),样品电导率随着滑动位移的增加快速增加,在滑动约数十厘米之后,其电导率基本达到稳定状态;在垂直滑动面方向(轴向),样品电导率基本不随摩擦滑动速率和滑动距离而变化.SEM显微结构观测显示,摩擦滑动所引起的电导率各向异性直接反映了石墨分布结构的变化.该研究结果深化了对地震断裂带浅部电性特征的认识,为野外断层带大地电磁测深资料的解释提供了约束,同时对于了解含碳断层的力学性质和弱矿物相在剪切变形中的分布特征及其演化过程等方面也具有重要意义.
        Field geological surveys reveal that carbon is often enriched within natural fault zones.The distribution of carbon in fault zones is a crucial parameter influencing the electrical conductivity of fault zones.In this paper,we study the impact of fault motion on carbon distribution and the effects of carbon content and distribution on the electrical characteristics of faults through friction experiments incorporated with electrical conductivity measurements.The experiments were conducted on the mixtures of quartz-graphite with different graphite contents(3,5,6 and 7 wt%),at a normal stress of 2 MPa and slip rates ranging from 500μm·s-1 to 1 m·s-1,under room temperature and humidity.Experimental results indicate that frictional sliding can significantly change the electrical conductivity ofsamples(magnitude and anisotropy of conductivity).In the direction parallel to the slip surface,the conductivity of the sample increases rapidly with shear displacements and then stabilizes after slipping about tens of centimeters,while the sample conductivity does not change with slip velocities and distances along the direction perpendicular to the slip surface.SEM microstructures analyses show that the anisotropy of electrical conductivity caused by frictional slip directly reflects the distribution structure of graphite.This study deepens our understanding on the electrical characteristics of shallow fault zones,and provides an important constraint on the interpretation of field magnetotelluric data.Furthermore,our results are significant in understanding the mechanical properties of carbon-rich fault zones,besides the distribution characteristics and the evolution processes of weak minerals during displacements in the shear deformation.
引文
Bigalke J,Junge A,Zulauf G.2003.Electronically conducting brittle-ductile shear zones in the crystalline basement of Rittsteig(Bohemian Massif,Germany):Evidence from self potential and hole-to-surface electrical measurements.International Journal of Earth Sciences,93(1):44-51.
    Boylan J.1996.Smooth operators:Carbon-graphite materials.Materials World,4(12):707-708.
    Chen J Y,Yang X S,Ma S L,et al.2016.Hydraulic properties of samples retrieved from the Wenchuan earthquake fault scientific drilling project hole-1(WFSD-1)and the surface rupture zone:Implications for coseismic slip weakening and fault healing.Geochemistry,Geophysics,Geosystems,17(7):2717-2744.
    Chen J Y,Yang X S.2017.Review of experimental studies on electrical conductivity of crustal rocks and minerals.Progress in Geophysics(in Chinese),32(6):2281-2294.
    Chen J Y,Yang X S,Chen J Y.2017.Experimental studies on the relationship between carbonaceous structure and electrical conductivity of the Longmenshan fault zone.Chinese Journal of Geophysics(in Chinese),60(9):3475-3492,doi:10.6038/cjg20170917.
    Craw D.2002.Geochemistry of late metamorphic hydrothermal alteration and graphitisation of host rock,Macraes gold mine,Otago Schist,New Zealand.Chemical Geology,191(4):257-275.
    Crespo E,Luque J,Barrenechea J,et al.2005.Mechanical graphite transport in fault zones and the formation of graphite veins.Mineralogical Magazine,69(4):463-470.
    Di Toro G,Han R,Hirose T,et al.2011.Fault lubrication during earthquakes.Nature,471(7339):494-498.
    Duan Q B,Yang X S,Ma S L,et al.2016.Fluid-rock interactions in seismic faults:Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake,China.Tectonophysics,666:260-280.
    Duba A,Huengest E,Nover G,et al.1988.Impedance of black shale from Münsterland 1 borehole:An anomalously good conductor?.Geophysical Journal,94(3):413-419.
    Duba A G,Shankland T J.1982.Free carbon&electrical conductivity in the Earth′s mantle.Geophysical Research Letters,9(11):1271-1274.
    Frost B R,Fyfe W S,Tazaki K,et al.1989.Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust.Nature,340(6229):134-136.
    Galvez M E,Beyssac O,Martinez I,et al.2013.Graphite formation by carbonate reduction during subduction.Nature Geoscience,6(6):473-477.
    Glover P W J,Vine F J.1992.Electrical conductivity of carbon bearing granulite at raised temperatures and pressures.Nature,360(6406):723-726.
    Glover P W J,Vine F J.1994.Electrical conductivity of the continental crust.Geophysical Research Letters,21(22):2357-2360.
    Glover P W J,Vine F J.1995.Beyond KTB-Electrical conductivity of the deep continental crust.Surveys in Geophysics,16(1):5-36.
    Haak V,Simpson F,Bahr K,et al.1997.KTB and the electrical conductivity of the crust.Journal of Geophysical Research,102(B8):18289-18306.
    Hirose T,Shimamoto T.2005.Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting.Journal of Geophysical Research:Solid Earth,110(B5):B05202,doi:10.1029/2004JB003207.
    Ikehara M,Hirono T,Tadai O,et al.2007.Low total and inorganic carbon contents within the Taiwan Chelungpu fault system.Geochemical Journal,41(5):391-396.
    J9dicke H,Kruhl J,Ballhaus C,et al.2004.Syngenetic,thin graphite-rich horizons in lower crustal rocks from the Serre San Bruno,Calabria(Italy),and implications for the nature of highconducting deep crustal layers.Physics of the Earth and Planetary Interiors,141(1):37-58.
    J9dicke H,Nover G,Kruhl J,et al.2007.Electrical properties of a graphite-rich quartzite from a former lower continental crust exposed in the Serre San Bruno,Calabria(southern Italy).Physics of the Earth and Planetary Interiors,165(1-2):56-67.
    Kuo L W,Li H B,Smith S S AF,et al.2014.Gouge graphitization and dynamic fault weakening during the 2008 MW7.9Wenchuan earthquake.Geology,42(1):47-50.
    Li C Y,Pang J Z,Zhang Z Q.2012.Characteristics,Geometry,and Segmentation of the Surface Rupture Associated with the 14April 2010Yushu Earthquake,Eastern Tibet,China.Bulletin of the Seismological Society of America,102(4):1618-1638.
    Li H B,Wang H,Xu Z Q,et al.2013.Characteristics of the faultrelated rocks,fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WFSD-1).Tectonophysics,584:23-42.
    Lin A,Ouchi T,Chen A,et al.2000.Co-seismic displacements,folding and shortening structures along the Chelungpu surface rupture zone occurred during the 1999Chi-Chi(Taiwan)earthquake.Tectonophysics,330(3-4):225-244.
    Ma S L,Shimamoto T,Yao L,et al.2014.A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates.Earthquake Science,27(5):469-497.
    Manatschal G.1999.Fluid-and reaction-assisted low-angle normal faulting:Evidence from rift-related brittle fault rocks in the Alps(Err Nappe,eastern Switzerland).Journal of Structural Geology,21(7):777-793.
    Mareschal M,Fyfe W S,Percival J,et al.1992.Grain-boundary graphite in Kapuskasing gneisses and implications for lowercrustal conductivity.Nature,357(6380):674-676.
    Mathez E A,Duba A G,Peach C L,et al.1995.Electrical conductivity and carbon in metamorphic rocks of the YukonTanana Terrane,Alaska.Journal of Geophysical Research:Solid Earth,100(B6):10187-10196.
    Mathez E A,Roberts J J,Duba A,et al.2008.Carbon deposition during brittle rock deformation:Changes in electrical properties of fault zones and potential geoelectric phenomena during earthquakes.Journal of Geophysical Research:Solid Earth,113(B12):B12201,doi:10.1029/2008JB005798.
    Mizoguchi K,Hirose T,Shimamoto T,et al.2007.Reconstruction of seismic faulting by high-velocity friction experiments:An example of the 1995 Kobe earthquake.Geophysical Research Letters,34(1):L01308,doi:10.1029/2006GL027931.
    Nover G,Heikamp S,Meurer H J,et al.1998.In-situ electrical conductivity and permeability of mid-crustal rocks from the Ktb drilling:Consequences for high conductive layers in the earth crust.Surveys in Geophysics,19(1):73-85.
    Nover G,Stoll J B,Von Der G9nna J.2005.Promotion of graphite formation by tectonic stress-a laboratory experiment.Geophysical Journal International,160(3):1059-1067.
    Oohashi K,Hirose T,Shimamoto T.2011.Shear-induced graphitization of carbonaceous materials during seismic fault motion:Experiments and possible implications for fault mechanics.JournalofStructural Geology,33(6):1122-1134.
    Oohashi K,Hirose T,Kobayashi K,et al.2012.The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system,Japan:Origins and implications for fault creep.Journal of Structural Geology,38:39-50.
    Oohashi K,Hirose T,Shimamoto T.2013.Graphite as a lubricating agent in fault zones:An insight from low-to high-velocity friction experiments on a mixed graphite-quartz gouge.Journal of Geophysical Research:Solid Earth,118(5):2067-2084.
    Oohashi K,Han R,Hirose T,et al.2014.Carbon-forming reactions under a reducing atmosphere during seismic fault slip.Geology,42(9):787-790.
    Proctor B P,Mitchell T M,Hirth G,et al.2014.Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates.Journal of Geophysical Research:Solid Earth,119(11):8107-8131.
    Rice J R.2006.Heating and weakening of faults during earthquake slip.Journal of Geophysical Research:Solid Earth,111(B5):B05311,doi:10.1029/2005JB004006.
    Roberts J J,Tyburczy J A.1999.Partial-melt electrical conductivity:Influence of melt composition.Journal of Geophysical Research:Solid Earth,104(B4):7055-7065.
    Scholz C H.2002.The Mechanics of Earthquakes and Faulting.2nd ed.Cambridge:Cambridge University Press.
    Shankland T J,Duba A G,Mathez E A,et al.1997.Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks.Journal of Geophysical Research:Solid Earth,102(B7):14741-14750.
    Shimamoto T,Tsutsumi A.1994.A new rotary-shear high-speed frictional testing machine:Its basic design and scope of research.Journal of Tectonic Research Group of Japan,39:65-78.
    Togo T,Shimamoto T,Ma S L,et al.2011.Internal structure of Longmenshan fault zone at Hongkou outcrop,Sichuan,China,that caused the 2008Wenchuan earthquake.Earthquake Science,24(3):249-265.
    Tsutsumi A,Shimamoto T.1997.High-velocity frictional properties of gabbro.Geophysical Research Letters,24(6):699-702.
    Wang H,Li H B,Si J L,et al.2014.Internal structure of the Wenchuan earthquake fault zone,revealed by surface outcrop and WFSD-1drilling core investigation.Tectonophysics,619-620:101-114.
    Yamashita F,Fukuyama E,Mizoguchi K.2014.Probing the slipweakening mechanism of earthquakes with electrical conductivity:Rapid transition from asperity contact to gouge comminution.Geophysical Research Letters,41(2):341-347.
    Yao L,Ma S L,Shimamoto T,et al.2013a.Structures and highvelocity frictional properties of the Pingxi Fault zone in the Longmenshan Fault system,Sichuan,China,activated during the 2008Wenchuan earthquake.Tectonophysics,599:135-156.
    Yao L,Shimamoto T,Ma S L,et al.2013b.Rapid postseismic
    strength recovery of Pingxi fault gouge from the Longmenshan fault system:Experiments and implications for the mechanisms of high-velocity weakening of faults.Journal of Geophysical Research:Solid Earth,118(8):4547-4563.
    Yao L,Ma S L,Platt J D,et al.2016.The crucial role of temperature in high-velocity weakening of faults:Experiments on gouge using host blocks with different thermal conductivities.Geology,44(1):63-66.
    Yao L.2013.Experimental studies on intermediate-to high-velocity frictional properties of fault gouges from the Longmenshan fault zone[Ph.D.].Beijing:Institute of Geology,China Earthquake Administration.
    Zulauf G,Kleinschmidt G,Oncken O.1990.Brittle Deformation and Graphitic Cataclasites in the Pilot Research Well KTB-VB(Oberpfalz,FRG).Geological Society,London,Special Publications,54(1):97-103.
    Zulauf G.1992.Late to post-Variscan deformation phases and palaeostresses in the KTB pilot research well(Bohemian Massif,Germany).Tectonophysics,202(1):1-21.
    Zulauf G,Palm S,Petschick R,et al.1999.Element mobility and volumetric strain in brittle and brittle-viscous shear zones of the superdeep well KTB(Germany).Chemical Geology,156(1-4):135-149.
    陈进宇,杨晓松.2017.地壳岩石矿物电导率实验研究进展.地球物理学进展,32(6):2281-2294.
    陈进宇,杨晓松,陈建业.2017.含碳结构对龙门山断层带电导率影响的实验探索.地球物理学报,60(9):3475-3492,doi:10.6038/cjg20170917.
    姚路.2013.龙门山断裂带断层泥中速-高速摩擦性质的实验研究[博士论文].北京:中国地震局地质研究所.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700