用户名: 密码: 验证码:
青藏铁路多年冻土区电力杆塔热桩基础的降温效果分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The cooling effect of power tower thermosyphon foundation in permafrost regions of the Qinghai-Tibet Railway
  • 作者:周亚龙 ; 王旭 ; 郭春 ; 蒋代军 ; 胡渊
  • 英文作者:ZHOU Yalong;WANG Xu;GUO Chunxiang;JIANG Daijun;HU Yuan;School of Civil Engineering, Lanzhou Jiaotong University;
  • 关键词:多年冻土 ; 热桩基础 ; 热棒功率 ; 降温效果
  • 英文关键词:permafrost;;thermosyphon foundation;;thermosyphon power;;cooling effect
  • 中文刊名:BCDT
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:兰州交通大学土木工程学院;
  • 出版日期:2019-02-25
  • 出版单位:冰川冻土
  • 年:2019
  • 期:v.41
  • 基金:冻土工程国家重点实验室开放基金项目(SKLFSE201607)资助
  • 语种:中文;
  • 页:BCDT201901011
  • 页数:9
  • CN:01
  • ISSN:62-1072/P
  • 分类号:106-114
摘要
在热棒外围浇筑混凝土形成的热桩基础在冻土区电力杆塔中常被应用。热棒的工作功率随着大气温度、蒸发段土体温度的变化而变化。基于冻土传热学相关知识,结合青藏铁路望昆~不冻泉段电力杆塔基础的现场地温测试试验,建立热桩基础的三维有限元模型。考虑全球气候变暖、冻土相变、混凝土水化放热、热棒功率变化等因素,运用迭代的方法进行热棒功率和桩周土体温度计算。计算结果表明:计算结果与实测结果吻合程度较高,能较好的模拟现场情况。热棒的功率呈非连续波浪式变化,受混凝土入模温度及水化放热的影响,初始阶段功率达到最大160.6 W,第2年的平均功率比第1年低7.0 W。热桩基础能够有效增加基础冷储量,最大降低桩侧土体地温2.1~3.0℃,年平均地温降低0.8~1.5℃,能缩短桩周土体回冻时间约34%,第30 a可提高冻土上限49 cm。
        The thermosyphon foundation formed by pouring concrete around the thermosyphon is often used in power tower in frozen soil regions. The working power of the thermosyphon varies with atmospheric temperature and soil temperature by the evaporation section. A three-dimensional finite element model of thermosyphon foundation was established in this paper, which based on the knowledge of frozen soil heat transfer and the field test of ground temperature of power tower foundation in the Wangkun-Budongquan Section of the Qinghai-Tibet Railway. Considering the global warming, frozen soil phase change, hydration heat release of concrete and the change of thermosyphon power, the thermosyphon power and the soil temperature around the pile are calculated by iterative method. The calculation results show that the calculated results are in good agreement with the measurement and can reasonably simulate the actual situation in the field well. The power of the thermosyphon varies with discontinuous wave, and the power in the initial stage is up to maximum 160.6 W, and the average working power in the second year is 7.0 W lower than that in the first year due to the influence of the temperature of the concrete entering mold and the hydration heat releasing. The thermosyphon pile foundation can effectively increase the cold reserves of the foundation; the maximum reduction of soil temperature may reach 2.1~3.0 ℃ and the average annual ground temperature can decrease 0.8~1.5 ℃. It also can shorten the soil refreezing time by 34% and will increase the permafrost table by 49 cm in the thirtieth year.
引文
[1] Yu Qihao, Liu Houjian, Qian Jin, et al. Research on frozen engineering of problem analysis of Qinghai-Tibet 500 kV DC power transmission line[J]. Chinese Journal of Engineering Geophysics, 2009, 6(6): 806-812. [俞祁浩, 刘厚建, 钱进, 等. 青藏直流联网工程±500 kV输电线路的工程问题分析[J]. 工程地球物理学报, 2009, 6(6): 806-812.]
    [2] Ma Wei, Liu Duan, Wu Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 572-579. [马巍, 刘端, 吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学, 2008, 29(3): 572-579.]
    [3] Liu Houjian, Cheng Dongxing, Yu Qihao, et al. Study on frozen soil engineering problems and countermeasures of high altitude transmission lines[J]. Geotechnical Investigation and Surveying, 2009(4): 32-36. [刘厚健, 程东幸, 俞祁浩, 等. 高海拔输电线路的冻土工程问题及对策研究[J]. 工程勘察, 2009(4): 32-36.]
    [4] Ding Jingkang. Study on the application of thermal pile technology in frozen soil region[D]. Lanzhou: China Railway Northwest Research Institute, 2002. [丁靖康. 冻土地区热桩技术应用研究[D]. 兰州: 中铁西北研究院, 2002.]
    [5] Heuer C E. The application of heat pipes on the Trans-Alaska pipeline[C]. CRREL Special Report, 1979: 26-79.
    [6] Denhartog S L. A thermosyph on for horizontal applications[J]. Cold Regions Sciences and Technology, 1988, 17(15): 319-321.
    [7] Smith L B, Graham J P, Nixon J F, et al. Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion[J]. Canadian Geotechnical Journal, 1991, 28(3): 399-409.
    [8] Cheng Guodong, Wu Qingbo, Ma Wei. Engineering effect of active cooling subgrade of Qinghai-Tibet Railway[J]. Science in China: Series E Technological Sciences, 2009, 39(1): 16-22. [程国栋, 吴青柏, 马巍. 青藏铁路主动冷却路基的工程效果[J]. 中国科学: E辑技术科学2009, 39(1): 16-22.]
    [9] Li Yongqiang. Analysis of the actual measurement result of the thermal probes in Fenghuoshan area on Qinghai-Tibet Plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22 (Suppl 2): 2669-2672. [李永强. 热棒在青藏高原风火山地区的实测效果分析[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2669-2672.]
    [10] Zhou Yong, Dong Xianfu, Zhang Bo, et al. Experimental study on cooling effect of thermal pipe in frozen soil subgrade of Chaidaer-Muli Railway[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 688-694. [周勇, 董献付, 张波, 等. 柴达尔-木里铁路冻土路基热棒冷却效果的试验研究[J]. 冰川冻土, 2009, 31(4): 688-694.]
    [1[1] Pan Weidong, Zhao Suchang, Xu Weize, et al. Application of thermal probe to enhance thermal stability of roadbed in plateau permafrost areas[J]. Journal of Glaciology and Geocryology, 2003, 25(4): 433-438. [潘卫东, 赵肃菖, 徐伟泽, 等. 热棒技术加强高原冻土区路基热稳定性的应用研究[J]. 冰川冻土, 2003, 25(4): 433-438.]
    [12] Pan Weidong, Lian Fengyu, Deng Hongyan, et al. Application principle and prospect of thermal-probe technique in cold region engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(Suppl 2): 2673-2676. [潘卫东, 连逢愈, 邓宏艳, 等. 寒区工程中热棒技术的应用原理和前景[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2673-2676.]
    [13] Biyan ov G F, Makarow V I. Characteristics of construction of frozen dams in Western Yakutiya[C]. Proceedings of the Third International Conference on Permafrost. Ottawa, Ontario KIAORG, Canada, 1978: 779-785.
    [14] Guo Chunxiang, Wu Yaping, Dong Sheng, et al. Three dimensional nonlinear finite element analysis of cooling effect of thermal pipe embankment[J]. Journal of Central South University: 2014, 45(Suppl 1): 202-207. [郭春香, 吴亚平, 董晟, 等. 热棒填土路基降温效果的三维非线性有限元分析[J]. 中南大学学报, 2014, 45(增刊1): 202-207.]
    [15] Li Yongqiang. Influences of diameter of thermal probes on effect of decreasing earth temperature and producing cold quantity along Qinghai-Tibet Railway in permafrost area[J]. Journal of Geotechnical Engineering, 2011, 33(Suppl 1): 510-515. [李永强. 青藏铁路多年冻土区热棒直径对降温效果和产冷量的影响分析[J]. 岩土工程学报, 2011, 33(增刊1): 510-515.]
    [16] Wu Junjie, Ma Wei, Sun Zhizhong, et al. Evaluating cooling effect of two-phase closed thermosyphon by estimated heat budget[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 106-115. [武俊杰, 马巍, 孙志忠, 等. 用估算热收支的方法评价热制冷效果[J]. 冰川冻土, 2010, 32(1): 106-115.]
    [17] Wang Shuangjie. Research on highway subgrade stability and prediction technology in plateau permafrost regions[D]. Nanjing: Southeast University, 2005. [汪双杰. 高原多年冻土区公路路基稳定及预测技术研究[D]. 南京: 东南大学, 2005.]
    [18] Sheng Yu, Wen Zhi, Ma Wei, et al. Three-dimensional nonlinear analysis of thermal regime of the two-phase closed thermosyphon closed thermosyphon embankment of Qinghai-Tibet railway[J]. Journal of the China Railway Society, 2006, 28(1): 125-130. [盛煜, 温智, 马巍, 等. 青藏铁路多年冻土区热棒路基温度场三维非线性分析[J]. 铁道学报, 2006, 28(1): 125-130.]
    [19] Jiang Daijun, Wang Xu, Liu Deren, et al. Experimental study on stability of thermal pile foundation of transmission tower in permafrost foundation of Qinghai-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl 3): 4258-4263. [蒋代军, 王旭, 刘德仁, 等. 青藏铁路多年冻土地基输电塔热棒桩基稳定性试验研究[J]. 岩石力学与工程学报, 2014, 33(增刊3): 4258-4263.]
    [20] Sun Wen, Wu Yaping, Guo Chunxiang, et al. Influences of two-phase closed thermosyphon on permafrost roadbed stability[J]. China Journal of Highway and Transport, 2009, 22(5): 15-19. [孙文, 吴亚平, 郭春香, 等. 热棒对多年冻土路基稳定性的影响[J]. 中国公路学报, 2009, 22(5): 15-19.]
    [2[1] The Professional Standards Compilation Group of the People′s Republic of China. JGJ118-2011 the designing criterion of the foundations in permafrost regions[S]. Beijing: China Architecture and Building Press, 2011. [中华人民共和国行业标准编写组. JGJ118-2011冻土地区建筑地基基础设计规范[S]. 北京: 中国建筑出版社, 2011.]
    [22] Guo Chunxiang, Yang Fanjie, Wu Yaping, et al. Influences of concrete hydration heat on the melting and refreezing processes of surrounding rock of tunnels in the permafrost region[J]. Journal of the China Railway Society, 2011, 33(11): 106-110. [郭春香, 杨凡杰, 吴亚平, 等. 混凝土水化热对寒区隧道围岩融化及回冻过程的影响[J]. 铁道学报, 2011, 33(11): 106-110.]
    [23] Wu Yaping, Guo Chunxiang, Zhao Shiyun, et al. Influence of casting temperature of single pile on temperature field of ground in permafrost of Qinghai-Xizang Plateau[J]. Journal of the China Railway Society, 2004, 26(6): 81-85. [吴亚平, 郭春香, 赵世运, 等. 青藏高原冻土区灌注桩入模温度对地温场的影响分析[J]. 铁道学报, 2004, 26(6): 81-85.]
    [24] Jia Yanmin, Tian Haiqi, Guo Hongyu. Study on the influence of hydration heat and initial casting temperature on the refreezing process of bored pile[J]. Engineering Mechanics, 2011, 28(1): 44-47. [贾艳敏, 田海旗, 郭红雨. 水化热及入模温度对灌注桩回冻过程影响的研究[J]. 工程力学, 2011, 28(1): 44-47.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700