用户名: 密码: 验证码:
白云凹陷第三系储层中铁白云石的成因机理及与CO_2活动的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Forming mechanism of ankerite in Tertiary reservoir of the Baiyun sag,Pearl River Mouth basin,and its relationship to CO_2-bearing fluid activity
  • 作者:庞江 ; 罗静兰 ; 马永坤 ; 蔡国富 ; 雷川 ; 李弛 ; 李晓艳 ; 张月霞
  • 英文作者:PANG Jiang;LUO Jinglan;MA Yongkun;CAI Guofu;LEI Chuan;LI Chi;LI Xiaoyan;ZHANG Yuexia;State Key Laboratory of Continental Dynamics,Northwest University;Sichuan Key Laboratory of Shale Gas Evaluation and Exploitation;Research Institute,Shenzhen Branch of China National Offshore Oil Corporation Limited;
  • 关键词:铁白云石 ; CO_2热流体 ; 成因模式 ; 第三系储层 ; 白云凹陷
  • 英文关键词:ankerite;;CO_2 hydrothermal fluid;;forming mechanism;;the Tertiary reservoir;;Baiyun sag
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:西北大学大陆动力学国家重点实验室;页岩气评价与开采四川省重点实验室;中海石油(中国)有限公司深圳分公司研究院;
  • 出版日期:2019-03-15
  • 出版单位:地质学报
  • 年:2019
  • 期:v.93
  • 基金:国家自然科学基金项目(编号41572128);; 国家科技重大专项(编号2016ZX05026-003-005、2016ZX05026-003-003)资助成果
  • 语种:中文;
  • 页:DZXE201903015
  • 页数:14
  • CN:03
  • ISSN:11-1951/P
  • 分类号:218-231
摘要
白云凹陷第三系储层中发育大量的铁白云石,受研究区热流背景的影响,铁白云石主要见于高地温梯度地区埋深1000~3000m、地层温度60~130℃的浅—中部地层中及CO_2热流体活动区域。铁白云石的δ~(13)C值(-2.83‰~-1.83‰)具有无机成因的特征,与研究区气藏中幔源岩浆成因CO_2的δ~(13)C值较为一致,铁白云石的δ~(18)O值(-9.45‰~-5.37‰)和~(87)Sr/~(86)Sr值(0.7101~0.7161)也反映了其沉淀受到深部热流体活动的影响。以两口典型CO_2气井为例,储层中流体包裹体均一温度及蒙脱石向伊利石的演化特征证明储层经历了热流体侵入;CO_2热流体活动区域不仅是铁白云石集中分布地带,并出现片钠铝石+铁白云石+菱铁矿等示踪CO_2运移、聚集的自生矿物组合。地层中铁白云石、高岭石含量与气藏中CO_2的含量呈正相关关系,绿泥石含量与CO_2、铁白云石含量呈反消长关系。高地温梯度地区丰富的CO_2热流体活动是该地区储层中铁白云石沉淀与含量高的重要原因,无机岩浆成因CO_2是铁白云石沉淀的主要碳源,CO_2热流体充注造成绿泥石等黏土矿物异常转化,为铁白云石沉淀提供了所需的Fe~(2+)、Mg~(2+)离子。
        Abundant ankerite occurs in the Tertiary reservoir of Baiyun Sag, Pearl River Mouth Basin. Influenced by heat flow background in the study area, ankerite is mainly distributed in the high geothermal gradient area with shallow-medium burial depths from 1000 to 3000 m and temperature between 60~130℃. The δ~(13)C value(-2.83‰~-1.83‰) of the ankerite, which is consistent with that of magmatic origin CO_2 in the gas pool, indicates its inorganic origin. The values(-9.45‰~-5.37‰) of δ~(18)O and ~(87)Sr/~(86)Sr(0.7101~0.7161)also show that precipitation of the ankerite was affected by the deep hydrothermal fluid activity. Case study of two typical CO_2 gas wells shows that the homogenization temperature of fluid inclusions and evolution of montmorillonite to illite prove that the reservoir underwent thermal fluid invasion. CO_2 thermal fluid activity regions are not only the concentrated distribution area of ankerite but also the places hosting typical authigenic mineral assemblage of dawsonite+ankerite+siderite, which can trace CO_2 migration and accumulation. The contents of ankerite and kaolinite in the formation are positively correlated with that of CO_2 in the gas pool, and the content of chlorite is negatively correlated with that of CO_2 and ankerite. Aabundant CO_2 hydrothermal activity was the main reason for the precipitation of developed ankerite in the high geothermal gradient area. CO_2 of inorganic magmatic origin was the main carbon source for precipitation of the ankerite. The abnormal transformation of clay minerals(such as chlorite) caused by CO_2 thermal fluid charging provided the necessary Fe~(2+), Mg~(2+) ions for precipitation of the ankerite.
引文
Boles J R. 1987. Active ankerite cementation in the subsurface Eocene of southwest Texas. Contributions to Mineralogy & Petrology, 68(1): 13~22.
    Chen Honghan, Mi Lijun, Li Yanhua, Han Jinyang, Kong Lingtao.2017. Genesis, distribution and risk belt prediction of CO2 in deep-water area in the Pearl River Mouth Basin. Acta Petrolei Sinica, 38(2): 119~134 (in Chinese with English abstract).
    Dai Jinxing, Dai Chunsen, Song Yan, Hong Feng. 1994.Inorganic genetic carbon dioxide gas accumulations and their characteristics in east part of China. China Offshore Oil and Gas(Geology), 8(4): 215~222 (in Chinese with English abstract).
    Gao Yuqiao, Liu Li, Qu Xiyu. 2005. Gemesis of dawsonite and its indication significance of CO2 migration and accumulation. Advance in Earth Sciences, (10): 1083~1088 (in Chinese with English abstract).
    Gao Yuqiao, Liu Li. 2007. Basiccharacteristics of dawsonite-bearing sandstone and its geologic significance. Geological Review, 33(1): 104~111 (in Chinese with English abstract).
    Guo Xiaowen, He Sheng, Shi Hesheng, Zhu Junzhang. 2010. Hot fluid activities and the hydrocarbon accumulation in the PY30-1 structure of Panyu Low Uplift, Pearl River Mouth basin. Petroleum Exploration and Development, 37(3): 297~303 (in Chinese with English abstract).
    He Yongyao, Wang Yingming, Xu Cuixia, Chang Yuan. 2012. Characterisitcs and accumulation model of gas chimneys in deep water area of Baiyun Sag, Pearl River Mouth basin. Marine Origin Petroleum Geology, 17(3) : 62~66 (in Chinese with English abstract).
    Hendry J P, Wilkinson M, Fallick A E, Haszeldine R S. 2000. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the central North Sea. Journal of Sedimentary Research, 70(1): 227~239.
    Hendry J P. 2002. Geochemical trends and palaeohydrological significance of shallow burial calcite and ankerite cements in Middle Jurassic strata on the East Midlandsshelf (onshore UK). Sedimentary Geology, 151(1-2): 149~176.
    Lei Chuan, Luo Jinglan, Ma Yongkun, Li Chi, Zhang Li, Pang Jiang, Li Xiaoyan. 2017. Distribution of carbon dioxide in Baiyun sag and its periphery, Pearl River Mouth Basin. Journal of Mineralogy and Petrology, 37(3):97~106 (in Chinese with English abstract).
    Li Chi. 2017. Impact of discriminating heat flow on burial-diagenesis-porosity evolution and sandstone reservoir property of Zhuhai Formation, Baiyun sag, Pearl River Mouthbasin. Xi’an: Master thesis of Nourthwest University, 1~73 (in Chinese with English abstract).
    Lin Xisheng, Ying Fengxiang, Zheng Naixuan. 1990. Analytical technique of X-ray diffraction and its geological application. Beijing: Petroleum Industry Press, 95~110 (in Chinese).
    Liu Huaibo, Wu Zhiyong, Harvey B, James M F. 1995. Diagenesis and porosity evolution of the Spiro sandstone in south Hartshorne gas field of Oklahoma, USA. Journal of Jianghan Petroleum Insititute, 17(2): 1~9 (in Chinese with English abstract).
    Liu Li, Gao Yuqiao, Qu Xiyu, Meng Qian, Gao Fuhong, Ren Yanguang, Zhu Defeng. 2006. Petrology and carbon-oxygen isotope of inorganic CO2 gas reservoir in Wuerxun depression, Hailaer basin. Acta Petrologica Sinica, 22(8): 2229~2236 (in Chinese with English abstract).
    Liu N, Liu L, Qu X, Yang H, Wang L, Zhao S. 2011. Genesis of authigene carbonate minerals in the Upper Cretaceous reservoir, Hongganganticline, Songliao basin: A natural analog for mineral trapping of natural CO2 storage. Sedimentary Geology, 237(3~4): 166~178.
    Macaulay C I, Haszeldine R S, Fallick A E. 1993. Distribution, chemistry, isotopic composition and origin of diagenetic carbonates: Magnus sandstone, North Sea. Journal of Sedimentary Petrology, 63(1): 33~43.
    Meng Fanjin, Xiao Lihua, Xie Yuhong, Wang Zhenfeng, Liu Jinghuan, Zhang Huolan, Gao Yuting, Meng Yuanlin, Wei Wei. 2012. Abnormal transformation of the clay minerals in Yinggehai basin and its significances. Acta Sedimentogica Sinica, 30(3): 469~476 (in Chinese with English abstract).
    Morley C K. 2016. Major unconformities/termination of extension events and associated surfaces in the South China Seas: review and implications for tectonic development. Journal of Asian Earth Sciences,120: 62~86.
    Mi Lijun, Zhang Gongcheng, Fu Ning, He Qing, Ma Liwu. 2006. An analysis of hydrocarbon source and accumulation in Panyu low-uplift and north slope of Baiyun sag, Pearl River Mouth basin. China Offshore Oil and Gas, 18(3) : 161~168 (in Chinese with English abstract).
    Mi Lijun,Yuan Yusong, Zhang Gongcheng, Hu Shengbiao, He Lijuan, Yang Shuchun. 2009. Characteristics and genesis of geothermal field in deep water area of the northern South China Sea. Acta Petrolei Sinica, 30(1): 27~32 (in Chinese with English abstract).
    Nie Fengjun, Jiang Meizhu, Li Sitian, Xia Fei, Hu Qinghua. 2005. The responses of sandstone to hot fluid flow and their identified markers—A case study from the western part of the Pearl River Mouthbasin. Earth Science Frontiers, 12(4): 581~591 (in Chinese with English abstract).
    Pang Xiong, Chen Changmin, Shao Lei, Zhu Ming, He Min, Shen Jun, Lian Shiyong, Wu Xiangjie. 2007. Baiyun Movement, a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications. Geological Review, 53(2):145~151 (in Chinese with English abstract).
    Qin Xiaoli, Li Rongxi, Xi Shengli, Yang Tao, Cheng Jinghua, Zhao Bangsheng, Wang Ning. 2017. Hydrothermal alteration and its influence on quality of the Upper Palaeozoic gas reservoirs in eastern Ordos basin. Natural Gas Geoscience, 28(1): 43~51 (in Chinese with English abstract).
    Song Yang, Zhao Changyu, Zhang Gongcheng, Song Haibin, Shan Jingnan, Chen Lin. 2011. Research on tectono-thermal modeling for Qiongdongnan basin and Pearl River Mouth basin in the northern South China Sea. Chinese Journal of Geophysics, 54(12): 3057~3069 (in Chinese with English abstract).
    Sun Jinshan, Dai Yiding, Yao Zhenhe, Liu Xin, Du Kezheng. 2015. Study effect of CO2 on gas accumulation in the deepwater region of South Pearl-River Mouth basin. Guangzhou: The 17th annual meeting of China Association for Science and Technology (in Chinese).
    Sun Q, Wu S, Cartwright J, Dong D. 2012. Shallow gas and focused fluid flow systems in the Pearl River Mouthbasin, northern South China Sea. Marine Geology, 315~318(4): 1~14.
    Sun Zhen, Pang Xiong, Zhong Zhihong, Zhou Di, Chen Changmin, Hao Hujun, He Min, Xu Hehua. 2005. Dynamics of Tertiary tectonic evolution of the Baiyun sag in the Pearl River Mouth basin. Earth Science Frontiers, 12(04): 489~498 (in Chinese with English abstract).
    Tang Xiaoyin, Hu Shengbiao, Zhang Gongcheng, Yang Shuchun, Shen Huailei, Rao Song, Li Weiwei. 2014. Characteristic of surface heat flow in the Pearl River Mouth basin and its relationship with thermal lithosphere thickness. Chinese Journal of Geophysics, 57(6): 1857~1867 (in Chinese with English abstract).
    Wang Darui, Zhang Yinghong. 2001. A study on the origin of the carbonate cements within reservoirs in the exeteral metamorphic belt of the Bohai Bay. Petroleum Exploration and Development, 28(2): 40~42 (in Chinese).
    Wang Daifu, Luo Jinglan, Chen Shuhui, Hu Haiyan, Ma Yongkun, Li Chi, Liu Baojun, Chen Liang. 2017. Carbonate cementation and origin analysis of deep sandstone reservoirs in the Baiyun Sag, Pearl River Mouth basin. Acta Geologica Sinica, 91(9): 2079~2090 (in Chinese with English abstract).
    Wang Qi, Hao Lewei, Chen Guojun, Zhang Gongcheng, Zhang Rui, Ma Xiaofeng, Wang Huan. 2010. Forming mechanism of carbonate cements in siliciclastic sandstone of Zhuhai Formation in Baiyunsag. Acta Petrolei Sinica, 31(4): 553~558 (in Chinese with English abstract).
    Watson M N, Zwingmann N, Lemon N M. 2004. The Ladbroke Grove-Katnook carbon dioxide natural laboratory: A recent CO2 accumulation in a lithic sandstone reservoir. Energy, 29(9-10): 1457~1466.
    Worden R H. 2006. Dawsonite cement in the Triassic Lam Formation, Shabwabasin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Marine & Petroleum Geology, 23(1): 61~77.
    Wu Xiangjie, Zhou Di, Pang Xiong, Hao Hujun, Shen Jun. 2005. Geophysical field and deep structures ofBaiyun sag, Zhujiang River Mouth basin. Journal of Tropical Oceanography, 24(2): 62~69 (in Chinese with English abstract).
    Xi K, Cao Y, Zhu R, Haile B G. 2016. Evidences of localized CO2-induced diagenesis in the Cretaceous Quantou Formation, southern Songliao basin, China. International Journal of Greenhouse Gas Control, 52: 155~174.
    Xie Xinong, Li Sitian, Dong Weiliang, Zhang Minqiang, Yang Jihai. 1999. Trace marker of hot fluid flow and their geological implications a case study of Yinggehai basin. Earth Science, 24(02): 75~80 (in Chinese with English abstract).
    Xu Beimei, Lu Bing. 1994. The study of diagenetic carbonate in siliciclastic rock and it’s control on the reservoir. Acta Sedimentogica Sinica, 12(3): 56~66 (in Chinese with English abstract).
    Xu T, Apps J A, Pruess K. 2004. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19(6): 917~936.
    Yang Guodong, Li Yilian, Ma Xin, Dong Jianxing. 2014. Effect ofchlorite on CO2-water-rock interaction. Earth Science (Journal of China University of Geosciences), 39(4): 462~472 (in Chinese with English abstract).
    Yuan Yusong, Ding Meigui. 2008. Characteristics and geodynamic setting of the basins in deepwater area of the northern South China sea maigin. Marine Sciences, 32(12): 102~110 (in Chinese with English abstract).
    Zhu Huanlai, Qu Xiyu, Liu Li, Yu Zhichao, Zhang Lidong, Tang Hui. 2011. Study on interaction between the feldspar and CO2 fluid. Journal of Jilin University (Earth Science Edition), 41(3): 697~706 (in Chinese with English abstract).
    参考文献陈红汉,米立军,刘妍鷨,韩晋阳,孔令涛. 2017. 珠江口盆地深水区CO2成因、分布规律与风险带预测. 石油学报, 38(2): 119~134.
    戴金星,戴春森,宋岩,洪峰. 1994. 中国东部无机成因CO2气藏及其特征. 中国海上油气(地质), 8(4): 215~222.
    高玉巧,刘立,曲希玉. 2005. 片钠铝石的成因及其对CO2天然气运聚的指示意义. 地球科学进展, (10): 1083~1088.
    高玉巧,刘立. 2007. 含片钠铝石砂岩的基本特征及地质意义. 地质论评, 33(1): 104~111.
    郭小文,何生,施和生,朱俊章. 2010. 番禺低隆起PY30-1构造热流体活动及油气成藏. 石油勘探与开发, 37(3): 297~303.
    何永垚,王英明,许翠霞,常圆. 2012. 珠江口盆地深水区白云凹陷气烟囱特征及成藏模式. 海相油气地质, 17(3) : 62~66.
    雷川,罗静兰,马永坤,李弛,张丽,庞江,李晓艳. 2017. 珠江口盆地白云凹陷及其周缘CO2分布与控制因素分析与启示. 矿物岩石, 37(3): 97~106.
    李弛. 2017. 热流背景差异对白云凹陷珠海组砂岩储层埋藏-成岩-孔隙演化过程及储集性能的影响. 西安: 西北大学硕士学位论文, 1~73.
    林西生,应凤祥,郑乃萱. 1990. X射线衍射分析技术及其地质应用. 北京: 石油工业出版社, 95~110.
    刘怀波,吴智勇,Harvey B, James M F. 1995. 俄克拉荷马州南哈桑气田斯普罗砂岩的成岩作用和孔隙演化. 江汉石油学院学报, 17(2): 1~9.
    刘立,高玉巧,曲希玉,蒙启安,高福红,任延广,朱德丰. 2006. 海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征. 岩石学报, 22(8): 2229~2236.
    孟凡晋,肖丽华,谢玉洪,王振峰,刘景环,童传新,张伙兰,高煜婷,孟元林,魏巍. 2012. 莺歌海盆地黏土矿物异常转化及其地质意义. 沉积学报, 30(3): 469~476.
    米立军,张功成,傅宁,贺清,马立武. 2006a. 珠江口盆地白云凹陷北坡-番禺低隆起油气来源及成藏分析. 中国海上油气, 18(3): 161~168.
    米立军,袁玉松,张功成,胡圣标,何丽娟,杨树春. 2009. 南海北部深水区地热特征及其成因. 石油学报, 30(1): 27~32.
    聂逢君,姜美珠,李思田,夏菲,胡青华,郝红蕾. 2005. 砂岩对热流体作用的响应及识别标记——以珠江口盆地西部为例. 地学前缘, 12(4): 581~591.
    庞雄,陈长民,邵磊,王成善,朱明,何敏,申俊,连世勇,吴湘杰. 2007. 白云运动:南海北部渐新统—中新统重大地质事件及其意义. 地质论评, 53(2): 145~151.
    覃小丽,李荣西,席胜利,杨涛,程敬华,赵帮胜,王宁. 2017. 鄂尔多斯盆地东部上古生界储层热液蚀变作用. 天然气地球科学, 28(1): 43~51.
    宋洋,赵长煜,张功成,宋海斌,单竞男,陈林. 2011. 南海北部珠江口与琼东南盆地构造-热模拟研究. 地球物理学报, 54(12): 3057~3069.
    孙金山,代一丁,姚振河,刘鑫,杜克拯. 2015. 珠江口盆地南部深水区CO2对天然气成藏影响的探讨. 广州:第十七届中国科协年会——南海深水油气勘探开发技术研讨会.
    孙珍,庞雄,钟志洪,周蒂,陈长民,郝沪军,何敏,黄春菊,许鹤华. 2005. 珠江口盆地白云凹陷新生代构造演化动力学. 地学前缘, 12(04): 489~498.
    唐晓音,胡圣标,张功成,杨树春,沈怀磊,饶松,李卫卫. 2014. 珠江口盆地大地热流特征及其与热岩石圈厚度的关系. 地球物理学报, 57(6): 1857~1867.
    王大锐,张映红. 2001. 渤海湾油气区火成岩外变质带储集层中碳酸盐胶结物成因研究及意义. 石油勘探与开发, 28(2): 40~42.
    王代富,罗静兰,陈淑慧,胡海燕,马永坤,李弛,柳保军,陈亮. 2017. 珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨. 地质学报, 91(9): 2079~2090.
    王琪,郝乐伟,陈国俊,张功成,张瑞,马晓峰,王欢. 2010. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理. 石油学报, 31(4): 553~558.
    吴湘杰,周蒂,庞雄,郝沪军,申俊. 2005. 白云凹陷地球物理场及深部结构特征. 热带海洋学报, 24(2): 62~69.
    解习农,李思田,董伟良,张敏强,杨继海. 1999. 热流体活动示踪标志及其地质意义——以莺歌海盆地为例. 地球科学,24(02): 75~80.
    徐北煤,卢冰. 1994. 硅质碎屑岩中碳酸盐胶结物及其对储层的控制作用的研究. 沉积学报, (03): 56~66.
    杨国栋,李义连,马鑫,董建兴. 2014. 绿泥石对CO2-水-岩石相互作用的影响. 地球科学(中国地质大学学报), 39(4): 462~472.
    袁玉松, 丁玫瑰. 2008. 南海北部深水区盆地特征及其动力学背景. 海洋科学, 32(12):102~110.
    朱焕来,曲希玉,刘立,于志超,张立东,唐辉. 2011. CO2流体-长石相互作用实验研究. 吉林大学学报(地球科学版), 41(3): 697~706.
    ? 罗静兰, 王代富, 胡海燕,等. 2015. 白云凹陷深水砂岩储层成岩作用综合研究(内部报告). 西北大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700