用户名: 密码: 验证码:
滨海人工林土壤呼吸各组分对台风强降雨的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Great Typhoon Rainfall on Soil Respiration Components in Coastal Plantations
  • 作者:王磊 ; 桑昌鹏 ; 余再鹏 ; 林宇 ; 施秀珍 ; 万晓华 ; 黄志群
  • 英文作者:WANG Lei;SANG Changpeng;YU Zaipeng;LIN Yu;SHI Xiuzhen;WAN Xiaohua;HUANG Zhiqun;State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province,Fujian Normal University;School of Geographical Sciences,Fujian Normal University;Institute of Applied Ecology,Chinese Academy of Sciences;Changle Dahe State-owned Protection Forest Farm of Fujian Province;
  • 关键词:人工林 ; 土壤呼吸 ; 自养呼吸 ; 异养呼吸 ; 土壤湿度 ; 强降雨
  • 英文关键词:Plantation;;Soil respiration;;Autotrophic respiration;;Heterotrophic respiration;;Soil moisture;;Great rainfall
  • 中文刊名:FJDL
  • 英文刊名:Journal of Subtropical Resources and Environment
  • 机构:福建师范大学湿润亚热带山地生态国家重点实验室培育基地;福建师范大学地理科学学院;中国科学院沈阳应用生态研究所;福建省长乐大鹤国有防护林场;
  • 出版日期:2019-03-15
  • 出版单位:亚热带资源与环境学报
  • 年:2019
  • 期:v.14
  • 基金:福建省教育厅项目(JAT160113);; 福建省自然科学基金面上项目(2018J01714);; 国家自然科学基金青年项目(31600495);国家自然科学基金应急管理项目(31741024)
  • 语种:中文;
  • 页:FJDL201901007
  • 页数:9
  • CN:01
  • ISSN:35-1291/N
  • 分类号:42-50
摘要
根据预测,随着全球变暖,极端降水将更加频繁和剧烈,可能对土壤呼吸及其组分产生重大影响。然而目前对极端降雨如何影响土壤呼吸各组分的认识仍是缺乏的。因此选取亚热带滨海湿地松和尾巨桉人工林土壤为研究对象,于2015年8月在设置去除根系和对照处理一年后,应用Li-8100土壤CO_2通量测定系统,对2次台风强降雨前后的土壤呼吸速率和环境因子进行原位监测,分析2次台风前后土壤呼吸各组分对强降雨的响应规律。结果表明:(1)2次台风强降雨显著改善了土壤的水分状况,促进了土壤呼吸各组分。2种人工林土壤总呼吸、异养呼吸均呈现出快速上升、后逐渐下降的趋势,而土壤自养呼吸的上升不明显。土壤总呼吸与异养呼吸的峰值与土壤湿度的峰值同步,而自养呼吸峰值要滞后1天。(2)第一次降雨,湿地松和尾巨桉土壤异养呼吸对总呼吸的贡献率分别是自养呼吸的5.15和6.28倍。相比于土壤自养呼吸(R_a),异养呼吸增加的幅度更大且响应更快。(3)第一次降雨湿地松土壤总呼吸、异养呼吸及尾巨桉土壤异养呼吸与土壤湿度的二次曲线关系存在拐点,而第二次降雨促进了2种人工林土壤异养呼吸、总呼吸速率。2次台风强降雨湿地松和尾巨桉人工林的土壤自养呼吸均和土壤湿度无显著相关性(P>0.05)。综上,研究结果强调了极端降水对土壤呼吸及其组分的显著影响,应该将其纳入模型中,以提高对碳-气候反馈的预测。
        Extreme precipitation has been predicted to be more frequent and intense accompanying global warming, thus it may have profound impacts on soil respiration(R_s) and its components. However, how natural extreme rainfall events affect soil respiration components are still unclear. Pinus elliottiiand E.ucalyptus urophylla×E.ucalyptus grandis plantation were selected in the subtropical coastal sandy plain forests. In August 2015, a year after root trenching and control treatments were set up, using the Li-8100 soil CO_2 flux monitor system to monitor the soil CO_2 flux. The R_s rate was monitored for two great rainfall events of the typhoon(before and after) in situ, and the environmental factors were measured simultaneously. The response of R_s components to great rainfall before and after the two typhoons was analyzed. The results were shown as follows:(1) The great rainfall of two typhoons significantly increased soil moisture and R_s components. The R_s and R_h rate of two kinds of plantations showed a rapid increase, and then gradually decreased, but the increase of R_a was not obvious. The peak values of R_s and R_h rates were synchronous with the peak values of soil moisture. Meanwhile the peak values of R_a occurred behind the peak values of soil moisture by one day.(2) During the first rainfall, the rate of R_h was 5.15 and 6.28 times higher than that of R_a in the P.elliottii and E.urophylla×E.grandis plantations, respectively. R_h rate increased more rapidly and responded faster than soil autotrophic respiration.(3) During the first typhoon rainfall, there were inflection points in the quadratic curves between the soil respiration, R_h of P.elliottii and R_h of E.urophylla×E.grandis. The second rainfall improved the heterotrophic respiration and total respiration rates of the two plantations. However, there was no significant relationships(P>0.05) between R_a and soil moisture in two typhoon-heavy rainfalls of P.elliottii and E.urophylla×E.grandis plantations. Overall, our results highlight the significant effects of extreme precipitation on responses of soil respiration and its components, which should be incorporated into models to improve the prediction of carbon-climate feedbacks.
引文
[1] RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus Series B-Chemical & Physical Meteorology, 1992, 44(2):81-99.
    [2] RAICH J W, POTTER C S, BHAGAWATI D. Interannual variability in global soil respiration, 1980-94 [J]. Global Change Biology, 2002, 8:800-812.
    [3] THOMSON A. Temperature-associated increases in the global soil respiration record [J]. Nature, 2010, 464(7288):579-582.
    [4] PENG S S, SHILONG P, TAO W, et al. Temperature sensitivity of soil respiration in different ecosystems in China [J]. Soil Biology & Biochemistry, 2009, 41(5):1008-1014.
    [5] ALLEN S K, PLATTNER G K, NAUELS A, et al. Climate change 2013: The physical science basis. An overview of the Working Group 1 contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) [J]. Computational Geometry, 2014, 18(2):95-123.
    [6] LUO Y, ZHOU X. Soil Respiration and the Environment [M]. Academic Press, an imprint of Elsevier, 2006:79.
    [7] SUSAN T. Carbon respired by terrestrial ecosystems: Recent progress and challenges [J]. Global Change Biology, 2010, 12(2):141-153.
    [8] H?GBERG P, NORDGREN A, BUCHMANN N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration [J]. Nature, 2001, 411(6839):789-792.
    [9] WAN S, LUO Y. Substrate regulation of soil respiration in a tall grass prairie: Results of a clipping and shading experiment [J]. Global Biogeochemical Cycles, 2003, 17(2):1-12.
    [10] TANG J, BALDOCCHI D D, XU L. Tree photosynthesis modulates soil respiration on a diurnal time scale [J]. Global Change Biology, 2005, 11(8):1298-1304.
    [11] CHEN Z, XU Y, ZHOU X, et al. Extreme rainfall and snowfall alter responses of soil respiration to nitrogen fertilization: A 3-year field experiment [J]. Global Change Biology, 2017, 23(8):3403-3417.
    [12] ZIMMERMANN M, MEIR P, BIRD M I, et al. Temporal variation and climate dependence of soil respiration and its components along a 3000 m altitudinal tropical forest gradient [J]. Global Biogeochemical Cycles, 2010, 24(4):1-13.
    [13] CASALS P, LOPEZ-SANGIL L, CARRARA A, et al. Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a Mediterranean desert [J]. Global Biogeochemical Cycles, 2011, 25(3):1-12.
    [14] NIKOLOVA P S, RASPE S, ANDERSEN C P, et al. Effects of the extreme drought in 2003 on soil respiration in a mixed forest [J]. European Journal of Forest Research, 2009, 128(2):87-98.
    [15] 刘博奇, 牟长城, 邢亚娟,等. 小兴安岭典型温带森林土壤呼吸对强降雨的响应 [J]. 北京林业大学学报, 2016, 38(4):77-85.
    [16] 王义东, 王辉民, 马泽清,等. 土壤呼吸对降雨响应的研究进展 [J]. 植物生态学报, 2010, 34(5):601-610.
    [17] ZHANG L H, CHEN Y N, ZHAO R F, et al. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China [J]. Journal of Arid Environments, 2010, 74(10):1200-1211.
    [18] LEE X, WU H, SIGLER J,et al. Rapid and transient response of soil respiration to rain [J]. Global Change Biology, 2015, 10(6):1017-1026.
    [19] WU H J, LEE X. Short-term effects of rain on soil respiration in two New England forests [J]. Plant & Soil, 2011, 338(1/2):329-342.
    [20] 刘源月, 江洪, 李雅红,等. 模拟酸雨对杉木幼苗-土壤复合体系土壤呼吸的短期效应 [J]. 生态学报, 2010, 30(8):2010-2017.
    [21] 张红星, 王效科, 冯宗炜,等. 黄土高原小麦田土壤呼吸对强降雨的响应 [J]. 生态学报, 2008, 28(12):6189-6196.
    [22] 金冠一,赵秀海,康峰峰,等. 太岳山油松人工林土壤呼吸对强降雨的响应 [J]. 生态学报, 2013, 33(6):1832-1841.
    [23] LIN T C, HAMBURG S P, HSIA Y J, et al. Influence of typhoon disturbances on the understory light regime and stand dynamics of a subtropical rain forest in northeastern Taiwan [J]. Journal of Forest Research, 2003, 8(3):139-145.
    [24] LIN K C, HAMBURG S P, TANG S,et al. Typhoon effects on litterfall in a subtropical forest [J]. Canadian Journal of Forest Research, 2003, 33(11):2184-2192.
    [25] 黄昌勇. 土壤学 [M]. 北京:中国农业出版社, 2000:118.
    [26] EHLERINGER J R, SCHWINNING S, GEBAUER R. Water use in arid land ecosystems [J]. Physiological Plant Ecology, 1999:347-365.
    [27] HUXMAN T E, SNYDER K A, TISSUE D, et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems [J]. Oecologia, 2004, 141(2):254-268.
    [28] REICHSTEIN M, TENHUNEN J D, ROUPSARD O,et al. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics [J]. Functional Ecology, 2002, 16(1):27-39.
    [29] CONANT R T, DALLA-BETTA P, KLOPATEK C C,et al. Controls on soil respiration in semiarid soils [J]. Soil Biology & Biochemistry, 2004, 36(6):945-951.
    [30] YU C L, HUI D, DENG Q, et al. Responses of switchgrass soil respiration and its components to precipitation gradient in a mesocosm study [J]. Plant & Soil, 2017, 420(1/2):1-13.
    [31] GUO J F, YANG Y S, LIU L Z, et al. Effect of temperature on soil respiration in a Chinese fir forest [J]. Journal of Forestry Research, 2009, 20(1):49-53.
    [32] BORKEN W, MATZNER E.Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils [J]. Global Change Biology, 2009, 15(4):808-824.
    [33] MOYANO F E, MANZONI S, CHENU C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models [J]. Soil Biology & Biochemistry, 2013, 59(59):72-85.
    [34] PARTON W, MORGAN J, SMITH D,et al. Impact of precipitation dynamics on net ecosystem productivity [J]. Global Change Biology, 2012, 18(3):915-927.
    [35] HUANG B, NOBEL P S. Hydraulic conductivity and anatomy along lateral roots of cacti: Changes with soil water status [J]. New Phytologist, 1993, 123(3):499-507.
    [36] LIU X, WAN S, SU B, et al. Response of soil CO2 efflux to water manipulation in a tall grass prairie ecosystem [J]. Plant & Soil, 2002, 240(2):213-223.
    [37] RYANA S. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem [J]. Global Change Biology, 2007, 13(2):426-436.
    [38] NORTON U, MOSIER A R, MORGAN J A, et al. Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming, USA [J]. Soil Biology & Biochemistry, 2008, 40(6):1421-1431.
    [39] JANSSENS I A, LANKREIJER H, MATTEUCCI G,et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests [J]. Global Change Biology, 2010, 7(3):269-278.
    [40] 杨玉盛, 陈光水, 王小国,等. 中国亚热带森林转换对土壤呼吸动态及通量的影响[J]. 生态学报, 2005, 25(7):1684-1690.
    [41] 余再鹏, 黄志群, 王民煌,等. 亚热带米老排和杉木人工林土壤呼吸季节动态及其影响因子[J]. 林业科学, 2014, 50(8):7-14.
    [42] DEYN G B, CORNELISSEN H C, BARDGETT R D. Plant functional traits and soil carbon sequestration in contrasting biomes [J]. Ecology Letters, 2010, 11(5):516-531.
    [43] CLEVELAND C C, REED S C, TOWNSEND A R. Nutrient regulation of organic matter decomposition in a tropical rain forest [J]. Ecology, 2006, 87(2):492-503.
    [44] 王宁, 王美菊, 李世兰,等. 降水变化对红松阔叶林土壤微生物生物量生长季动态的影响[J]. 应用生态学报, 2015, 26(5):1297-1305.
    [45] 桑昌鹏, 万晓华, 余再鹏,等. 凋落物和根系去除对滨海沙地土壤微生物群落组成和功能的影响[J]. 应用生态学报, 2017, 28(4):1184-1196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700