用户名: 密码: 验证码:
中药化学生物学——“中药化学”与“生物学”交叉形成的新兴学科
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:TCM chemical biology——emerging interdiscipline of "TCM chemistry" and "biology"
  • 作者:曾克武 ; 姜勇 ; 王晶 ; 叶敏 ; 李军 ; 艾晓妮 ; 宋月林 ; 韩利文 ; 刘可春 ; 屠鹏飞
  • 英文作者:ZENG Ke-wu;JIANG Yong;WANG Jing;YE Min;LI Jun;AI Xiao-ni;SONG Yue-lin;HAN Li-wen;LIU Ke-chun;TU Peng-fei;State Key Laboratory of Natural and Biomimetic Drugs,School of Pharmaceutical Sciences,Peking University;Modern Research Center for Traditional Chinese Medicine,School of Chinese Materia Medica,Beijing University of Chinese Medicine;Biology Institute,Qilu University of Technology(Shandong Academy of Sciences);
  • 关键词:中药化学生物学 ; 中药 ; 中药化学 ; 化学生物学
  • 英文关键词:traditional Chinese medicine chemical biology(TCMCB);;traditional Chinese pharmacology;;traditional Chinese medicine chemistry;;chemical biology
  • 中文刊名:ZGZY
  • 英文刊名:China Journal of Chinese Materia Medica
  • 机构:北京大学药学院天然药物及仿生药物国家重点实验室;北京中医药大学中药学院中药现代研究中心;齐鲁工业大学(山东省科学院)山东省科学院生物研究所;
  • 出版日期:2019-02-22 16:22
  • 出版单位:中国中药杂志
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金项目(81773932,30873072,81530097);; 国家重点研发计划项目(2018ZX09711001-008-003
  • 语种:中文;
  • 页:ZGZY201905001
  • 页数:12
  • CN:05
  • ISSN:11-2272/R
  • 分类号:7-18
摘要
中医药学是我国最具原创特色的科学领域,是中国走向世界的一张名片。但是由于中医药学自身遵循一套区别于西方现代医学体系的独特的科学思想和理论体系,长期以来难以被现代社会广泛接受与认可,也严重影响了中医药的国际化。因此,如何创建一套既体现中医药自身特色,又能够桥接现代科学理论的研究策略,全面系统地揭示中医药的独特科学内涵,一直是人们关注的热点问题。课题组经过在中药学领域多年的实践探索与科学思想凝练,首次提出了中药化学生物学(traditional Chinese medicine chemical biology,TCM chemical biology,TCMCB)的概念。其核心思想就是以中医药理论为指导,将中药药效成分作为化学工具,探讨中药调控生命过程的科学本质,架起中医与现代医学之间的桥梁。特别是中药化学生物学聚焦于阐释中药作用靶点和分子机制,发现中药调控疾病进程的基本规律,最终科学诠释中医药理论。该研究思路不仅科学诠释中医药防治疾病的分子机制,而且发现活性分子及其作用靶点,促进创新药物的发展;探讨生命过程的科学本质和疾病发生发展的规律,促进生命科学和现代医学的发展,具有重要意义。该文详细介绍了中药化学生物学的定义、学术思想、研究方法及其技术体系、科学意义,以期为中医药学发展提供新的研究思路和学术思想。
        Traditional Chinese medicine(TCM) is a research area with highly original innovation features,and is also a Chinese name card to the world. However,TCM owns a unique theoretical system which is quite different from western modern medicine,leading to an awkward situation of deficient modern social identity as well as poor international spread. Therefore,how to establish a research strategy in line with the characteristics of TCM itself to systematically interpret the unique scientific connotation of TCM is always a public hot topic. Based on persistent practical exploration and scientific consideration in TCM,our group firstly promoted the concept of traditional Chinese medicine chemical biology(TCM chemical biology,TCMCB). The major idea of TCMCB is to clarify the nature of TCM regulating life progress to link TCM to modern medicine by using TCM components as chemical tools. Notably,TCMCB mainly focuses on TCM target identification and TCM-guided disease molecular mechanism exploration,further to clarify the basic law of TCM mediating disease process. Finally,TCMCB-guided scientific studies can help explain TCM theory and promote the developmentof modern innovative drugs based on identified targets using TCM active components. Moreover,TCMCB is of vital importance for investigating the scientific nature of biological progress and the pattern of disease occurrence and development,indicating a key significance for modern life science and medicine. This review introduces the definition of TCMCB as well as its academic thought,research method,technology system and scientific significance,for providing new research ideas and scientific thoughts for TCM development.
引文
[1] Liao L X,Song X M,Wang L C,et al. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy[J].Proc Natl Acad Sci USA,2017,114(29):E5986.
    [2]刘莹,秦怡文,陈明.基于现代医案探讨桂枝汤证治规律[J].江苏中医药,2018,50(12):77.
    [3]顾武军.麻黄汤证治辨析[J].南京中医学院学报,1993,9(4):5.
    [4] Ji S,Wang S,Xu H,et al. The application of on-line two-dimensional liquid chromatography(2D LC)in the chemical analysis of herbal medicines[J]. J Pharm Biomed Anal,2018,160:301.
    [5] Zhao J,Ma S C,Li S P. Advanced strategies for quality control of Chinese medicines[J]. J Pharm Biomed Anal, 2018,147:473.
    [6] Zhang A H,Sun H,Yan G L,et al. Recent developments and emerging trends of mass spectrometry for herbal ingredients analysis[J]. Trend Anal Chem,2017,94:70.
    [7] Wang X,Zhang A H,Yan G L,et al. UHPLC-MS for the analytical characterization of traditional Chinese medicines[J].Trend Anal Chem,2014,63:180.
    [8] Song Y L,Song Q Q,Li J,et al. Chromatographic analysis of Polygalae Radix by online hyphenating pressurized liquid extraction[J]. Sci Rep,2016,6:27303.
    [9] Song Q Q,Li J,Liu X,et al. Home-made online hyphenation of pressurized liquid extraction,turbulent flow chromatography,and high performance liquid chromatography,Cistanche deserticola as a case study[J]. J Chromatogr A,2016,1438:189.
    [10] Liu W,Song Q,Yan Y,et al. Integrated approach for confidence-enhanced quantitative analysis of herbal medicines,Cistanche salsa as a case[J]. J Chromatogr A,2018,1561:56.
    [11] Yan Y,Song Q,Chen X,et al. Simultaneous determination of components with wide polarity and content ranges in Cistanche tubulosa using serially coupled reverse phase-hydrophilic interaction chromatography-tandem mass spectrometry[J]. J Chromatogr A,2017,1501:39.
    [12] Song Y L,Jing W H,Du G,et al. Qualitative analysis and enantiospecific determination of angular-type pyranocoumarins in Peucedani Radix using achiral and chiral liquid chromatography coupled with tandem mass spectrometry[J]. J Chromatogr A,2014,1338:24.
    [13] Qiao X,Song W,Ji S,et al. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice(Glycyrrhiza uralensis)using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry[J]. J Chromatogr A,2015,1402:36.
    [14] Wang S,Wang Q,Qiao X,et al. Separation and characterization of triterpenoid saponins in Gleditsia sinensis by comprehensive two-dimensional liquid chromatography coupled with mass spectrometry[J]. Planta Med,2016,82(18):1558.
    [15] Qiao X,Wang Q,Song W,et al. A chemical profiling solution for Chinese medicine formulas using comprehensive and loopbased multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. J Chromatogr A,2016,1438:198.
    [16] Qiao X,Song W,Ji S,et al. Separation and detection of minor constituents in herbal medicines using a combination of heartcutting and comprehensive two-dimensional liquid chromatography[J]. J Chromatogr A,2014,1362:157.
    [17] Liu Y,Song Q,Liu W,et al. Authentic compound-free strategy for simultaneous determination of primary coumarins in Peucedani Radix using offline high performance liquid chromatographynuclear magnetic resonance spectroscopy-tandem mass spectrometry[J]. Acta Pharm Sin B,2018,8(4):645.
    [18] Huo H,Liu Y,Liu W,et al. A full solution for multicomponent quantification-oriented quality assessment of herbal medicines,Chinese agarwood as a case[J]. J Chromatogr A,2018,1558:37.
    [19] Song Q,Liu W,Chen X,et al. Serially coupled reversed phasehydrophilic interaction liquid chromatography-tailored multiple reaction monitoring,a fit-for-purpose tool for large-scale targeted metabolomics of medicinal bile[J]. Anal Chim Acta,2018,1037:119.
    [20]张加余,屠鹏飞.天然产物液相色谱-质谱-数据库(LC-MSDS)的建立与应用[J].药学学报,2012,47(9):1187.
    [21] Jin W,Tu P F. Preparative isolation and purification of trans-3,5,4'-trihydroxystilbene-4'-O-beta-D-glucopyranoside and(+)catechin from Rheum tanguticum Maxim. ex Balf. using highspeed counter-current chromatography by stepwise elution and stepwise increasing the flow-rate of the mobile phase[J]. J Chromatogr A,2005,1092(2):241.
    [22] Michel T,Destandau E,Elfakir C. New advances in countercurrent chromatography and centrifugal partition chromatography:focus on coupling strategy[J]. Anal Bioanal Chem,2014,406(4):957.
    [23] He Y J,Zhu S H,Wu C Q,et al. Bioactivity-guided separation of potential D2dopamine receptor antagonists from Aurantii Fructus based on molecular docking combined with high-speed counter-current chromatography[J]. Molecules, 2018, 23(12):3135.
    [24] Fang L, Zhang H, Zhou J, et al. Rapid screening and preparative isolation of antioxidants from Alpinia officinarum Hance using HSCCC coupled with DPPH-HPLC assay and evaluation of their antioxidant activities[J]. J Anal Methods Chem,2018,2018:3158293.
    [25] KalíkováK,SlechtováT,Vozka J,et al. Supercritical fluid chromatography as a tool for enantioselective separation:a review[J]. Anal Chim Acta,2014,821:1.
    [26] Speybrouck D,Lipka E. Preparative supercritical fluid chromatography:a powerful tool for chiral separations[J]. J Chromatogr A,2016,1467:33.
    [27] LV H N,Wang S,Zeng K W,et al. Anti-inflammatory coumarin and benzocoumarin derivatives from Murraya alata[J].J Nat Prod,2015,78(2):279.
    [28] Ma X L,Li J,Zheng J,et al. LC-MS-guided isolation of insulinsecretion-promoting monoterpenoid carbazole alkaloids from Murraya microphylla[J]. J Nat Prod,2018,81(11):2371.
    [29] Huo H X,Gu Y F,Zhu Z X,et al. LC-MS-guided isolation of anti-inflammatory 2-(2-phenylethyl)chromone dimers from Chinese agarwood(Aquilaria sinensis)[J]. Phytochemistry,2019,158:46.
    [30] Msullo M,Cerulli A,Montoro P,et al. In depth LC-ESIMSnguided phytochemical analysis of Ziziphus jujuba Mill. leaves[J].Phytochemistry,2019,159:148.
    [31] Chen C K,Lin F H,Tseng L H,et al. Comprehensive study of alkaloids from Crinum asiaticum var. sinicum assisted by HPLCDAD-SPE-NMR[J]. J Nat Prod,2011,74(3):411.
    [32] Seger C,Sturm S,Stuppner H. Mass spectrometry and NMR spectroscopy:modern high-end detectors for high resolution separation techniques-state of the art in natural product HPLC-MS,HPLC-NMR,and CE-MS hyphenations[J]. Nat Prod Rep,2013,30(7):970.
    [33] Liu F,Wang Y N,Li Y,et al. Minor nortriterpenoids from the twigs and leaves of Rhododendron latoucheae[J]. J Nat Prod,2018,81(8):172.
    [34] Zhang C,Wang S,Zeng K W,et al. Nitric oxide inhibitory dimeric sesquiterpenoids from Artemisia rupestris[J]. J Nat Prod,2016,79(1):213.
    [35] Zhang C,Wen R,Ma X L,et al. Nitric oxide inhibitory sesquiterpenoids and its dimers from Artemisia freyniana[J]. J Nat Prod,2018,81(4):866.
    [36] Lv H N,Wen R,Zhou Y,et al. Nitrogen oxide inhibitory trimeric and dimeric carbazole alkaloids from Murraya tetramera[J]. J Nat Prod,2018,81(11):2371.
    [37] Huo H X,Zhu Z X,Song Y L,et al. Anti-inflammatory dimeric2-(2-phenylethyl)chromones from the resinous wood of Aquilaria sinensis[J]. J Nat Prod,2018,81(3):543.
    [38] Pang D R,Su X Q,Zhu Z X,et al. Flavonoid dimers from the total phenolic extract of Chinese dragon's blood,the red resin of Dracaena cochinchinensis[J].Fitoterapia,2016,115:135.
    [39] Zhang J,Zhang Q Y,Tu P F,et al. Mucroniferanines A-G,isoquinolinealkaloids from Corydalis mucronifera[J]. J Nat Prod,2018,81(2):364.
    [40] Zhang J,Zhang C,Xu F C,et al. Cholinesterase inhibitory isoquinoline alkaloids from Corydalis mucronifera[J].Phytochemistry,2019,159:199.
    [41] Reardon S.'Organs-on-chips'go mainstream[J]. Nature,2015,523(7560):266.
    [42] Ai X,Lu W,Zeng K,et al. Microfluidic coculturedevice for monitoring of inflammation-induced myocardial injury dynamics[J]. Anal Chem,2018,90(7):4485.
    [43] Ai X,Zhuo W,Liang Q,et al.A high-throughput device for size based separation of C. elegans developmental stages[J]. Lab Chip,2014,14(10):1746.
    [44] Ai X,Liang Q,Luo M,et al. Controlling gas/liquid exchange using microfluidics for real-time monitoring of flagellar length in living Chlamydomonas at the single-cell level[J]. Lab Chip,2012,12(21):4516.
    [45] MacRae C A,Peterson R T. Zebrafish as tools for drug discovery[J]. Nat Rev Drug Discov,2015,14(10):721.
    [46] Brown H K,Schiavone K,Tazzyman S,et al. Zebrafish xenograft models of cancer and metastasis for drug discovery[J]. Expert Opin Drug Discov,2017,12(4):379.
    [47] Saleem S,Kannan R R. Zebrafish:an emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery[J]. Cell Death Discov,2018,4:45.
    [48] Liu H,Chen X,Zhao X,et al. Screening and identification of cardioprotective compounds from Wenxin Keli by activity index approach and in vivo zebrafish model[J]. Front Pharmacol,2018,9:1288.
    [49] Crilly S,Njegic A,Laurie S E,et al. Using zebrafish larval models to study brain injury,locomotor and neuroinflammatory outcomes following intracerebral haemorrhage[J]. F1000Res,2018,7:1617.
    [50]高宠,王佳,王珺,等.斑马鱼脾不统血证模型建立[J].世界中西医结合杂志,2018,13(9):1185.
    [51] Saydmohammed M,Tsang M. High-throughput automated chemical screens in zebrafish[J]. Methods Mol Biol, 2018,1683:383.
    [52]韩利文,袁延强,何秋霞,等.斑马鱼模型在中药活性筛选中的适用性研究[J].中草药,2011,42(10):2037.
    [53] Sun G,Pan J,Liu K,Wang S,et al. Molecular cloning and expression analysis of P-selectin glycoprotein ligand-1 from zebrafish(Danio rerio)[J]. Fish Physiol Biochem,2012,38(2):555.
    [54] Zhang Y,Han L,He Q,et al. A rapid assessment for predicting drug-induced hepatotoxicity using zebrafish[J]. J Pharmacol Toxicol Methods,2017,84:102.
    [55] Han L,Yuan Y,Zhao L,et al. Tracking anti-angiogenic components from Glycyrrhiza uralensis Fisch based on zebrafish assays using high-speed counter-current chromatography[J]. J Sep Sci,2012,35(9):1167.
    [56] Xia Q,Wei L,Zhang Y,et al. Psoralen induces developmental toxicity in zebrafish embryos/larvae through oxidative stress,apoptosis,and energy metabolism disorder[J]. Front Pharmacol,2018,9:1457.
    [57] Liu C X,Yin Q Q,Zhou H C,et al. Adenanthin targets peroxiredoxinⅠandⅡto induce differentiation of leukemic cells[J].Nat Chem Biol,2012,8(5):486.
    [58] Dong T,Li C,Wang X,et al. Ainsliadimer a selectively inhibits IKKα/βby covalently binding a conserved cysteine[J].Nat Commun,2015,6:6522.
    [59] Li D,Li C,Li L,et al. Natural product kongensin A is a nonCanonical HSP90 inhibitor that blocks RIP3-dependent necroptosis[J].Cell Chem Biol,2016,23(2):257.
    [60] Huisgen R. 1,3-Dipolar cycloadditions. Past and future[J].Angew Chem Int Ed,1963,2:565.
    [61] Rostovtsev V V. A stepwise huisgen cycloaddition process:copper(I)-catalyzed regioselective'ligation'of azides and terminal alkynes[J]. Angew Chem Int Ed,2002,41(43):45.
    [62] Agard N J,Prescher J A,Bertozzi C R. A strain-promoted[3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems[J]. J Am Chem Soc, 2004, 126(46):15046.
    [63] Speers A E,Cravatt B F. Profiling enzyme activities in vivo using click chemistry methods[J]. Chem Biol(Cambridge),2004,11(4):535.
    [64] Winter G E,Buckley D L,Paulk J,et al. Phthalimide conjugation as a strategy for in vivo target protein degradation[J]. Science,2015,348(6241):1376.
    [65] Zhang H N,Yang L,Ling J Y,et al. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic[J].Proc Natl Acad Sci USA,2015,112(49):15084.
    [66] Molina D M,Jafari R,Ignatushchenko M,et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay[J]. Science,2013,341(6141):84.
    [67] Jin Y,Yoon Y J,Jeon Y J,et al. Geranylnaringenin(CG902)inhibits constitutive and inducible STAT3 activation through the activation of SHP-2 tyrosine phosphatase[J]. Biochem Pharmacol,2017,142:46.
    [68] Lomenick B,Hao R,Jonai N,et al. Target identification using drug affinity responsive target stability(DARTS)[J]. Proc Natl Acad Sci USA,2009,106(51):21984.
    [69]钱薏,韩清华,刘丹,等.合欢皮总皂苷抗肿瘤作用靶点鉴定与分子机制解析[J].中国中药杂志,2017,42(19):3661.
    [70]王丽超,刘丹,姜勇,等.基于分子亲和色谱技术的肉苁蓉低分子糖巨噬细胞激活作用靶点群鉴定与机制分析[J].中国中药杂志,2018,42(19):3666.
    [71] Wang L C,Liao L X,Lv H N,et al. Highly selective activation of heat shock protein 70 by allosteric regulation provides an insight into efficient neuroinflammation inhibition[J]. EBioMedicine,2017,23:160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700