用户名: 密码: 验证码:
风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Heave Plate on Dynamic Response of Floating Wind Turbine Spar Platform Under the Coupling Effects of Wind and Wave
  • 作者:丁勤卫 ; 李春 ; 袁伟斌 ; 郝文星 ; 余万
  • 英文作者:DING Qinwei;LI Chun;YUAN Weibin;HAO Wenxing;YU Wan;School of Energy and Power Engineering, University of Shanghai for Science and Technology;College of Civil Engineering and Architecture, Zhejiang University of Technology;
  • 关键词:漂浮式风力机 ; Spar平台 ; 垂荡板 ; 辐射/绕射理论 ; 叶素动量理论 ; 动态响应
  • 英文关键词:floating wind turbine;;Spar platform;;heave plate;;radiation/diffraction effect;;bladed element momentum;;dynamic response
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:上海理工大学能源与动力工程学院;浙江工业大学建筑工程学院;
  • 出版日期:2018-12-29 13:59
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.615
  • 基金:国家自然科学基金项目(51676131,51176129)~~
  • 语种:中文;
  • 页:ZGDC201904018
  • 页数:15
  • CN:04
  • ISSN:11-2107/TM
  • 分类号:191-205
摘要
建立基于OC3-Hywind Spar Buoy平台的NREL 5MW漂浮式风力机整机模型,提出漂浮式风力机Spar平台主体附加垂荡板的结构设计方法,基于叶素动量理论通过Fortran编程实现AQWA的二次开发,基于辐射/绕射理论对比研究了垂荡板及其安装位置对漂浮式风力机Spar平台动态响应特性的影响。结果表明:频域分析中,垂荡板对纵荡RAO影响较小,减小了垂荡RAO,但增大了纵摇RAO。时域分析中,风波耦合作用下垂荡板增大了平台纵荡响应,但安装位置对纵荡响应影响较小;垂荡板位于中部和底部时对平台垂荡响应的抑制效果最明显,位于上部时抑制效果不明显;垂荡板位于中部和底部时对纵摇响应抑制效果最明显,位于上部时增大了平台的纵摇响应;垂荡板位于中部和底部时明显提高其稳定性,位于上部时加剧了机舱纵荡加速度;垂荡板显著降低了系泊张力,但安装位置对系泊张力影响较小。
        The whole model of floating wind turbine was established based on the OC3-Hywind Spar Buoy platform and the NREL 5 MW wind turbine. This work proposed the structural design method of equipping the heave plate on the main body of the platform. Based on the bladed element momentum, the Fortran language was adopted to accomplish the secondary development of hydrodynamic software AQWA,and the radiation/diffraction theory was employed to do the comparative study of heave plate and its equipping position on the dynamic response of floating wind turbine Spar platform.Some interesting phenomena were found as follows. The heave plate can hardly affect the Surge RAO with a significant inhibition effect on the Heave RAO, while aggravating the pitch RAO in frequency domain analysis. In the time-domain analysis, surge movement of the platform increases significantly when considering the coupling effects of wind and wave and the effects of mooring line system. What's more, the heave movement of the platform is sensitive to the heave plate and its equip position. As to pitch movement, heave plate inhibits its response to some extent, but exacerbates its response when equipped on the upper part of the platform which is contrary to the bottom and middle equip cases. For surge vibration acceleration of the nacelle, heave plate can significantly improve its stability when equipped on the upper part of the platform. At last, cable force of the mooring line system is reduced distinctly but not sensitive to the equip position of the platform.
引文
[1]Jeon S H,Cho Y U,Seo M W,et al.Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables[J].Ocean Engineering,2013,72:354-364.
    [2]丁勤卫,李春,周国龙,等.陆海风力机动态响应对比[J].动力工程学报,2016,36(1):65-73.Ding Qinwei,Li Chun,Zhou Guolong,et al.Comparison of dynamic response between stationary and floating wind turbines[J].Journal of Chinese Society of Power Engineering,2016,36(1):65-73(in Chinese).
    [3]刘强,杨科,黄宸武,等.漂浮式风力机动态响应特性研究[J].工程热物理学报,2013,34(7):1256-1261.Liu Qiang,Yang Ke,Huang Chenwu,et al.Study on the dynamic response of floating wind turbines[J].Journal of Engineering Thermophysics,2013,34(7):1256-1261(in Chinese).
    [4]穆安乐,王超,刘宏昭,等.利用调频质量阻尼器结构实现海上漂浮式风力机的稳定性控制[J].中国电机工程学报,2013,33(35):89-94.Mu Anle,Wang Chao,Liu Hongzhao,et al.Stability control of floating wind turbines with tuned mass damper structure[J].Proceedings of the CSEE,2013,33(35):89-94(in Chinese).
    [5]王磊,何玉林,金鑫,等.漂浮式海上风电机组动力学仿真分析[J].中南大学学报:自然科学版,2012,43(4):1309-1314.Wang Lei,He Yulin,Jin Xin,et al.Dynamic simulation analysis of floating wind turbine[J].Journal of Central South University:Science and Technology,2012,43(4):1309-1314(in Chinese).
    [6]Jonkman J M,Matha D.A quantitative comparison of the responses of three floating platforms[C]//Proceedings of the European Offshore Wind 2009 Conference and Exhibition.Stockholm:National Renewable Energy Lab.,2009.
    [7]周国龙,叶舟,成欣,等.垂荡板对传统Spar平台水动力特性的影响[J].水资源与水工程学报,2015,26(4):143-148.Zhou Guolong,Ye Zhou,Cheng Xin,et al.Influence of heave plate on hydrodynamic characteristics of traditional Spar platform[J].Journal of Water Resources and Water Engineering,2015,26(4):143-148(in Chinese).
    [8]Thiagarajan K P,Troesch A W.Effects of appendages and small currents on the hydrodynamic heave damping of TLP columns[J].Journal of Offshore Mechanics and Arctic Engineering,1998,120(1):37-42.
    [9]Prislin I,Blevins R D,Halkyard J E.Viscous Damping and Added Mass of Solid Square Plates[C]//Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering.Lisbon,Portugal:OMAE,1998:54-75.
    [10]柳淑学,赵敏,李金宣,等.开孔垂荡板的水动力特性试验研究[J].水动力学研究与进展,2012,27(3):248-255.Liu Shuxue,Zhao Min,Li Jinxuan,et al.Experimental investigations of hydrodynamic characteristics of the perforated heave plates[J].Chinese Journal of Hydrodynamics,2012,27(3):248-255(in Chinese).
    [11]Tao Longbin,Dray D.Hydrodynamic performance of solid and porous heave plates[J].Ocean Engineering,2008,35(10):1006-1014.
    [12]Li Binbin,Huang Zhenhua,Low Y M,et al.Experimental and numerical study of the effects of heave plate on the motion of a new deep draft multi-spar platform[J].Journal of Marine Science and Technology,2013,18(2):229-246.
    [13]李彬彬,欧进萍.Truss Spar平台垂荡响应频域分析[J].海洋工程,2009,27(1):8-16.Li Binbin,Ou Jinping.Heave response analysis of truss spar in frequency domain[J].The Ocean Engineering,2009,27(1):8-16(in Chinese).
    [14]尹海涛.Cell Spar平台垂荡板水动力性能分析研究[D].大连:大连理工大学,2010.Yin Haitao.The hydrodynamic performance analysis of cell spar platform and heave plates[D].Dalian:Dalian University of Technology,2010(in Chinese).
    [15]Skaare B,Hanson T D,Nielsen F G,et al.Integrated dynamic analysis of floating offshore wind turbines[C]//Proceedings of 2007 European Wind Energy Conference and Exhibition.Milan,Italy:EWEA,2007.
    [16]赵振宙,李涛,王同光,等.基于转捩模型的风力机涡流发生器气动特性分析[J].中国电机工程学报,2016,36(10):2721-2727.Zhao Zhenzhou,Li Tao,Wang Tongguang,et al.Analysis on the performance of vortex generators of wind turbine based on transition model[J].Proceedings of the CSEE,2016,36(10):2721-2727(in Chinese).
    [17]Roberston A N,Jonkman J M.Loads analysis of several offshore floating wind turbine concepts[C]//Proceedings of the 21st International offshore and Polar Engineering Conference.Hawaii:International Society of Offshore and Polar Engineers,2011.
    [18]王渊博,李春,缪维跑,等.基于全风场功率输出的风力机控制策略研究[J].中国电机工程学报,2017,37(15):4437-4445.Wang Yuanbo,Li Chun,Miao Weipao,et al.Research on the control strategies of the wind turbine based on the total output powers of the global wind farm[J].Proceedings of the CSEE,2017,37(15):4437-4445(in Chinese).
    [19]Buhl Jr M L.A new empirical relationship between thrust coefficient and induction factor for the turbulent windmill state[R].Golden,CO:National Renewable Energy Laboratory(NREL),2005.
    [20]Dai J C,Hu Y P,Liu D S,et al.Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model[J].Renewable Energy,2011,36(3):1095-1104.
    [21]Roddier D,Cermelli C,Aubault A,et al.WindFloat:a floating foundation for offshore wind turbines[J].Journal of Renewable and Sustainable Energy,2010,2(3):033104.
    [22]Shin H,Cho S,Jung K.Model test of an inverted conical cylinder floating offshore wind turbine moored by a spring-tensioned-leg[J].International Journal of Naval Architecture and Ocean Engineering,2014,6(1):1-13.
    [23]邓磊,乔志德,杨旭东,等.水平轴风力机翼型大攻角气动性能计算研究[J].太阳能学报,2012,33(3):414-418.Deng Lei,Qiao Zhide,Yang Xudong,et al.CFDcalculations of aerodynamic performances of high-ofattack on wind turbine airfoils[J].Acta Energiae Solaris Sinica,2012,33(3):414-418(in Chinese).
    [24]Mahmuddin F,Klara S,Sitepu H,et al.Airfoil lift and drag extrapolation with Viterna and Montgomerie methods[J].Energy Procedia,2017,105:811-816.
    [25]Faisal M.The effect of flat plate theory assumption in post-stall lift and drag coefficients extrapolation with Viterna method[J].Journal of Subsea and Offshore,2016,6:9-13.
    [26]周志超,王成山,郭力,等.变速变桨距风电机组的全风速限功率优化控制[J].中国电机工程学报,2015,35(8):1837-1844.Zhou Zhichao,Wang Chengshan,Guo Li,et al.Output power curtailment control of variable-speed variable-pitch wind turbine generator at all wind speed region[J].Proceedings of the CSEE,2015,35(8):1837-1844(in Chinese).
    [27]Jonkman J,Butterfield S,Musial W,et al.Definition of a 5MW reference wind turbine for offshore system development[R].Golden,CO:National Renewable Energy Lab.,2009.
    [28]叶舟,王东华,丁勤卫,等.组合弹性系泊对漂浮式风力机Spar平台影响的研究[J].热能动力工程,2017,32(7):92-98.Ye Zhou,Wang Donghua,Ding Qinwei,et al.Study on the effect of combined elastic mooring on spar platform for floating wind turbine[J].Journal of Engineering for Thermal Energy and Power,2017,32(7):92-98(in Chinese).
    [29]闫功伟,欧进萍.基于AQWA的张力腿平台动力响应分析[J].东南大学学报:自然科学版,2009,39(S2):304-310.Yan Gongwei,Ou Jinping.Dynamic response analysis of TLP based on AQWA[J].Journal of Southeast University:Natural Science Edition,2009,39(S2):304-310(in Chinese).
    [30]KORDI.Concept design and analysis of floating wind turbine platforms(SHI-KORDI Joint Research)[R].Absan,Korea:Korea Ocean Research and Decelopment Institute.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700