用户名: 密码: 验证码:
木屑强化生物滞留池对径流中营养物质的长期有效去除
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Long-Term and Effective Removal of Nutrients in Stormwater Using a Field-Scale Wood-Chip Bioretention System
  • 作者:万哲希 ; 刘雨童 ; 李田
  • 英文作者:WAN Zhexi;LIU Yutong;LI Tian;College of Environmental Science and Engineering, Tongji University;
  • 关键词:生物滞留 ; 营养物 ; 木屑 ; 雨水利用
  • 英文关键词:bioretention;;nutrient;;wood chips;;use of rainwater
  • 中文刊名:TJDZ
  • 英文刊名:Journal of Tongji University(Natural Science)
  • 机构:同济大学环境科学与工程学院;
  • 出版日期:2019-03-01 11:52
  • 出版单位:同济大学学报(自然科学版)
  • 年:2019
  • 期:v.47
  • 基金:上海市科委项目(16DZ1202106)
  • 语种:中文;
  • 页:TJDZ201902008
  • 页数:7
  • CN:02
  • ISSN:31-1267/N
  • 分类号:61-67
摘要
生物滞留设施出水通常含有较多淋出的营养物质,降低了其用作景观水体补充水的价值.采用硬木屑作为生物滞留设施基质的有机成分,以降低基质中的营养物质含量,同时强化设施除氮能力.通过连续2年的现场实验,考察设施出水中污染物的含量及其变化,分析影响设施出水水质的因素,并考察营养物质减少可能造成的对植物生长的影响.结果表明,设施出水中氮(N)和磷(P)均得到有效控制,质量浓度远低于污水再生利用能够达到的出水平均质量浓度.在连续2年的运行过程中,基质中木屑降解淋出量减少,设施出水化学需氧量(COD)和总磷(TP)平均质量浓度下降至10.88和0.08 mg·L~(-1),出水总氮(TN)质量浓度没有明显变化,平均质量浓度为2.72 mg·L~(-1).使用发酵木屑作为基质有机组分可在减少生物滞留设施出水中有机物与营养物质淋出的同时,稳定提供设施脱氮需要的碳源,设施出水可为城市河道提供优质的补充水源.
        The nutrients are usually leaching from the bioretention system and reducing the reusable value of stormwater for landscape water supplement. In this paper, wood chips were used as the organic component of the bioretention system to reduce the medium nutrient content and to increase the nitrogen removal capacity of the system. The pollutant concentrations in the effluent, the factors affecting the effluent quality, and the nutrients reduction impact on plant growth were analyzed. The results show that the mass concentrations of nitrogen(N) and phosphorus(P) in the effluent are much lower than that of the wastewater reclamation, indicating that both N and P are effectively controlled. The amount of wood chips in the medium is decreased in the continuous operation for two years, while the average mass concentrations of chemical oxygen demand(COD) and total phosphorus(TP) in the effluent are decreased to 10.88 and 0.08 mg·L~(-1), respectively. The mass concentration of total nitrogen(TN) does not change significantly with the average value of 2.72 mg·L~(-1). Using wood chips as the medium organic component can stably provide the carbon source for the denitrification, while reducing the organic matter and nutrients concentration in the effluent. The effluent of the wood-chip bioretention system can provide high quality supplementary water for urban rivers.
引文
[1] 中华人民共和国住房和城乡建设部. 民用建筑节水设计标准:GB50555—2010[S]. 北京:中国建筑工业出版社, 2011. Miinistry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for water saving design in civil building: GB50555—2010[S]. Beijing: China Building Industry Press, 2011.
    [2] 国家环境保护总局,国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准:GB18918—2002[S].北京:中国环境出版社,2002. National Environmental Protection Agency, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Discharge standard of pollutants for municipal wastewater treatmentplant: GB18918—2002[S]. Beijing: China Environment Science Press, 2002
    [3] 国家质量监督检验检疫总局. 城市污水再生利用景观环境用水水质标准:GBT18921—2002[S]. 北京:中国标准出版社, 2002. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. The reuse of urban recycling water-water quality standard for scenic environment use: GBT18921—2002[S]. Beijing:Standards Press of China, 2002.
    [4] HSIEH C H, DAVIS A P, NEEDELMAN B A. Nitrogen removal from urban stormwater runoff through layered bioretention columns[J]. Water Environment Research, 2007, 79(12): 2404.
    [5] HUNT W F, SMITH J T, JADLOCKI S J, et al. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, N.C[J]. Jounal of Environmental Engineering, 2008, 134(5): 403.
    [6] LI H, DAVIS A P. Urban particle capture in bioretention media. Ⅱ: theory and model development[J]. Journal of Environmental Engineering, 2008, 134(6): 419.
    [7] LI L Q, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environmental Science and Technology, 2014, 48(6): 3403.
    [8] LYNN T J, YEH D H, ERGAS S J. Performance and longevity of denitrifying wood-chip biofilters for stormwater treatment: a microcosm study[J]. Environmental Engineering Science, 2015, 32(4): 321.
    [9] MULLANE J M, FLURY M, IQBAL H, et al. Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems[J]. Science of the Total Environment, 2015, 537(10): 294.
    [10] IQBAL H, GARCIA-PEREZ M, FLURY M. Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems[J]. Science of the Total Environment, 2015, 521/522(15): 37.
    [11] DIETZ M E, CLAUSEN J C. Saturation to improve pollutant retention in a rain garden[J]. Environmental Science & Technology, 2016, 40(4): 1335.
    [12] HSIEH C H, DAVIS A P, NEEDELMAN B A. Nitrogen removal from urban stormwater runoff through layered bioretention columns[J]. Water Environment Research, 2007, 79(12), 2404.
    [13] KIM H, SEAGREN E A, DAVIS A P. Engineered bioretention for removal of nitrate from stormwater runoff[J]. Water Environment Research, 2003, 75(4): 355.
    [14] WAN Z X, LI T, SHI Z B. A layered bioretention system for prohibiting nitrate and organic matters leaching[J]. Ecological Engineering, 2017, 107: 233.
    [15] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. National Environmental Protection Agency. Water and wastewater monitoring and analysis methods[M]. Beijing: China Environment Science Press, 2002.
    [16] CARTER M R, GREGORICH E G. Soil sampling and methods of analysis[M]. Boca Raton: CRC Press, 2007.
    [17] LI H, DAVIS A P. Urban particle capture in bioretention media. Ⅰ: laboratory and field studies[J]. Journal of Environmental Engineering, 2008, 134(6): 409.
    [18] BROWN R A, HUNT W F. Underdrain configuration to enhance bioretention exfiltration to reduce pollutant loads [J]. Journal of Environmental Engineering, 2011, 137(11):1082.
    [19] 刘强, 陈玲, 邱家洲,等, 污泥堆肥对园林植物生长及重金属积累的影响[J]. 同济大学学报(自然科学版), 2010, 38(6): 870. LIU Qiang, CHEN Ling, QIU Jiazhou. et al. Effects of sewage sludge compost on growth and heavy metal accumulation in hortieultural plants [J]. Journal of Tongji University (Natural Science), 2010, 38(6): 870.
    [20] 张继宁, 吕凡, 邵立明,等, 木炭对污泥堆肥有机质减量和腐熟度的影响[J]. 同济大学学报(自然科学版), 2014, 42(4): 577. ZHANG Jining, Lü Fan, SHAO Liming, et al. Impact of wood biochar on organic degradation and maturity of sewage sludge[J]. Journal of Tongji University (Natural Science), 2014, 42(4): 577.
    [21] 王建军, 李田, 张颖. 给水厂污泥改良生物滞留填料除磷效果的研究[J]. 环境科学, 2014, 35(12): 4642. WANG Jianjun, LI Tian, ZHANG Ying. Water treatment residual as a bioretention media amendment for phosphorus removal[J]. Environmental Science, 2014, 35(12): 4642.
    [22] GREENWAY M. The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia[J]. Ecological Engineering, 2005, 25(5): 501.
    [23] AVILA C, SALAS J J, MATIN I, et al. Integrated treatment of combined sewer wastewater and stormwater in a hybrid constructed wetland system in southern Spain and its further reuse[J]. Ecological Engineering, 2013, 50: 13.
    [24] 陈洪斌, 李辰, 刘富强. 膜生物反应器用于居民区生活污水处理与回用[J]. 同济大学学报(自然科学版), 2013, 41(2): 247. CHEN Hongbin, LI Chen, LIU Fuqian. Membrane bioreactor technology for treatment and reuse of mixed domestic wastewater from residential areas[J]. Journal of Tongji University (Natural Science), 2013, 41(2): 247.
    [25] SMITH D P. Sorptive media biofiltration for inorganic nitrogen removal from stormwater[J]. Journal of Irrigation and Drainage Engineering, 2008, 134(5): 624.
    [26] CHAHAL M K, SHI Z, FLURY M. Nutrient leaching and copper speciation in compost-amended bioretention systems[J]. Science of the Total Environment, 2016, 556: 302.
    [27] BROWN R A, HUNT W F. Impacts of media depth on effluent water quality and hydrologic performance of undersized bioretention cells[J]. Journal of Irrigation and Drainage Engineering, 2011, 137(3): 132.
    [28] HUNT W F, JARRETT A R, SMITH J T, et al., Evaluating bioretention hydrology and nutrient removal at three field sites in north carolina[J]. Journal of Irrigation and Drainage Engineering, 2006, 132(6): 600.
    [29] WAN Z X, LI T, LIU Y T. Effective nitrogen removal during different periods of a field-scale bioretention system[J]. Environmental Science and Pollution Research, 2018, 25(18):17855.
    [30] RANDALL M T, BRADFORD A. Bioretention gardens for improved nutrient removal[J]. Water Quality Research Journal of Canada, 2013, 48(4): 372.
    [31] BERMAN T, CHAVA S. Algal growth on organic compounds as nitrogen sources[J]. Journal of Plankton Research, 1999, 21(8): 1423.
    [32] BROWN S, CORFMAN M, MENDREY K. Stormwater bioretention systems: testing the phosphorus saturation index and compost feedstocks as predictive tools for system performance[J]. Journal of Environmental Quality, 2016, 45(1): 98.
    [33] 李强, 高祥,丁武泉. 常年淹水和干旱对三峡库区消落带菖蒲生长恢复的影响[J]. 环境科学, 2012, 33(8): 2628. LI Qiang, GAO Xiang, DING Wuquan. Influence of perennial flooding and drought on growth restoration of acorus calamus in water-level-fluctuation zone of the three gorges reservoir[J]. Environmental Science, 2012, 33(8): 2628.
    [34] 刘长娥, 宋祥甫, 付子轼. 8种湿地植物不同苗龄植株的表型特征及相关性分析[J]. 植物资源与环境学报, 2014, 23(1): 93. LIU Change, SONG Xiangfu, FU Zishi. Analyses on phenotypic characteristics of eight wetland species with different plant ages and their correlation[J]. Journal of Plant Resources and Environment, 2014, 23(1): 93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700