用户名: 密码: 验证码:
(Ag_2Se)_(1–x)(Bi_2Se_3)_x的热电性能研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermoelectric Properties of (Ag_2Se)_(1–x)(Bi_2Se_3)_x
  • 作者:刘虹霞 ; 李文 ; 张馨 ; 李娟 ; 裴艳中
  • 英文作者:LIU Hong-Xia;LI Wen;ZHANG Xin-Yue;LI Juan;PEI Yan-Zhong;Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University;State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:热电材料 ; 热电性能 ; AgBiSe2 ; 载流子浓度 ; SPB模型
  • 英文关键词:thermoelectric material;;thermoelectric properties;;AgBiSe2;;carrier concentration;;SPB model
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:同济大学材料科学与工程学院材料交叉学科研究中心;中国科学院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室;中国科学院大学;
  • 出版日期:2019-03-18 11:00
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.233
  • 基金:National Key Research and Development Program of China(2018YFB0703600);; National Natural Science Foundation of China(11474219,51772215);; Fok Ying Tung Education Foundation(20170072210001);; Fundamental Research Funds for Shanghai Science and Technology Innovation Plan(18JC1414600);; Fundamental Research Funds for the Central Universities
  • 语种:英文;
  • 页:WGCL201903014
  • 页数:8
  • CN:03
  • ISSN:31-1363/TQ
  • 分类号:111-118
摘要
具有本征低晶格热导率的I-V-VI_2族三元硫属化合物在热电领域引起了广泛关注。AgBiSe_2作为这类化合物中少有的n型半导体,成为一种有潜力的热电材料。本工作系统研究了AgBiSe_2的热电性能。基于Ag_2Se-Bi_2Se二元相图,单相的(Ag_2Se)_(1–x)(Bi_2Se_3)_x的成分在x=0.4~0.62范围可调,使得该材料载流子浓度具有可调性。结果表明,通过组分调控获得了较宽范围的载体浓度1.0×10~(19)~5.7×10~(19) cm~(-3),并基于声学声子散射的单一抛物带模型对其电传输性能进行了综合评估。本研究获得的最高载流子浓度接近理论最优值,在700 K实现了最高ZT值0.5。本研究有助于深入理解AgBiSe_2的传输特性和决定热电性能的基本物理参数。
        Ternary chalcogenides I-V-VI_2 compounds attract extensive attentions for thermoelectric applications due to their intrinsically low lattice thermal conductivity.AgBiSe_2,as one of a few n-type semiconductors among these compounds,shows the potential to be a promising thermoelectric material.Therefore,this work focuses on its thermoelectric properties.According to the phase diagram of Ag_2Se-Bi_2Se_3 system,the single phase region of(Ag_2Se)_(1–x)(Bi_2Se_3)_x allows x to be varied in the range of 0.4~0.62.This large variation of x suggests a tunability of carrier concentration for this material.A broad carrier concentration of 1.0×10~(19)~5.7×10~(19) cm~(-3) for single phased(Ag_2Se)_(1–x)(Bi_2Se_3)_x is obtained through a composition manipulation,which enables a comprehensive assessment on electronic transport properties based on a single parabolic band model with acoustic scattering.The highest carrier concentration obtained in this work,approaching to the theoretical optimal one,leads to a peak ZT of 0.5 at 700 K.This work offers a well understanding of its transport properties and underlying physical parameters determining the thermoelectric performance.
引文
[1]XI H,LUO L,FRAISSE G.Development and applications of solarbased thermoelectric technologies.Renewable and Sustainable Energy Reviews,2007,11(5):923-936.
    [2]HAMID ELSHEIKH M,SHNAWAH D A,SABRI M F M,et al.Areview on thermoelectric renewable energy:principle parameters that affect their performance.Renewable and Sustainable Energy Reviews,2014,30:337-355.
    [3]CADOFF I B,MILLER E.Thermoelectric materials and devices,New York:Reinhold Pub.Corp.,1960:p xiii,344p.
    [4]BELL L E.Cooling,heating,generating power,and recovering waste heat with thermoelectric systems.Science,2008,321(5895):1457-1461.
    [5]TRITT T M.Recent Trends in Thermoelectric Materials Research.San Diego:Academic Press,2001.
    [6]WOOD C.Materials for thermoelectric energy conversion.Reports on Progress in Physics,1988,51(4):459-539.
    [7]SNYDER G J,TOBERER E S.Complex thermoelectric materials.Nature Materials,2008,7(2):105-114.
    [8]BHANDARI C M,ROWE D M.Thermoelectric Transport Theory.In CRC handbook of thermoelectrics,Rowe,D.M.,Ed.Boca Raton:CRC Press,1995:27-42.
    [9]PEI Y,SHI X,LALONDE A,et al.Convergence of electronic bands for high performance bulk thermoelectrics.Nature,2011,473(7345):66-69.
    [10]LIN S,LI W,CHEN Z,et al.Tellurium as a high-performance elemental thermoelectric.Nature Communications,2016,7:10287.
    [11]CHEN Z,JIAN Z,LI W,et al.Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence.Advanced Materials,2017,29(23):1606768.
    [12]LI W,WU Y,LIN S,et al.Advances in environment-friendly SnTe thermoelectrics.ACS Energy Letters,2017,2(10):2349-2355.
    [13]LI W,ZHENG L L,GE B H,et al.Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects.Advanced Materials,2017,29(17):1605887-1-8.
    [14]LI J,ZHANG X,CHEN Z,et al.Low-symmetry rhombohedral Ge Te thermoelectrics.Joule,2018,2(5):976-987.
    [15]LI J,CHEN Z,ZHANG X,et al.Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance Ge Te thermoelectrics.Advanced Science,2017,4(12):1700341-1-9.
    [16]HONG M,CHEN Z G,YANG L,et al.Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping.Advanced Materials,2018,30(11):1705942-1-8.
    [17]HONG A J,LI L,ZHU H X,et al.Optimizing the thermoelectric performance of low-temperature SnSe compounds by electronic structure design.Journal of Materials Chemistry A,2015,3(25):13365-13370.
    [18]LIU W,TAN X,YIN K,et al.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions.Phys.Rev.Lett.,2012,108(16):166601.
    [19]FU C G,BAI S Q,LIU Y T,et al.Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.Nat.Commun.,2015,6:8144-1-7.
    [20]CHEN Z,ZHANG X,PEI Y.Manipulation of phonon transport in thermoelectrics.Advanced Materials,2018,2(1):1705617-1-12.
    [21]KANATZIDIS M G.Nanostructured thermoelectrics:the new paradigm?Chemistry of Materials,2010,22(3):648-659.
    [22]PEI Y Z,LENSCH-FALK J,TOBERER E S,et al.High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping.Advanced Functional Materials,2011,21(2):241-249.
    [23]XU J J,LI H,DU B L,et al.High ZT in nanostructuring AgSbTe2.Journal of Materials Chemistry,2010,20(29):6138-6143.
    [24]SCHAUMANN J,LOOR M,UNAL D,et al.Improving the zTvalue of thermoelectrics by nanostructuring:tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids.Dalton Trans,2017,46(3):656-668.
    [25]PICHANUSAKORN P,BANDARU P.Nanostructured thermoelectrics.Materials Science and Engineering:R:Reports,2010,67(2/3/4):19-63.
    [26]ZOU T,QIN X,ZHANG Y,et al.Enhanced thermoelectric performance of beta-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering.Scientific Reports,2015,5:17803-1-9.
    [27]POUDEL B,HAO Q,MA Y,et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.Science,2008,320(5876):634-638.
    [28]HONG M,CHEN Z G,YANG L,et al.BixSb2-xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings.Nano Energy,2016,20:144-155.
    [29]HONG M,CHASAPIS T C,CHEN Z G,et al.n-type Bi2Te3-xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings.ACS Nano,2016,10(4):4719-4727.
    [30]LI W,LIN S,ZHANG X,et al.Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy.Chemistry of Materials,2016,28(17):6227-6232.
    [31]HU L,ZHU T,LIU X,et al.Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials.Advanced Functional Materials,2014,24(33):5211-5218.
    [32]PEI Y,ZHENG L,LI W,et al.Interstitial point defect scattering contributing to high thermoelectric performance in SnTe.Advanced Electronic Materials,2016,2(6):1600019.
    [33]SHEN J W,ZHANG X Y,CHEN Z W,et al.Substitutional defects enhancing thermoelectric CuGaTe2.Journal of Materials Chemistry A,2017,5(11):5314-5320.
    [34]BOZHKO V V,NOVOSADОV,PARASYUK O V,et al.Influence of cation-vacancy defects on the properties of CuInSe2-Zn In2Se4solid solutions.Journal of Alloys and Compounds,2015,618:712-717.
    [35]KIM S I,LEE K H,MUN H A,et al.Thermoelectrics dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics.Science,2015,348(6230):109-114.
    [36]CHEN Z,GE B,LI W,et al.Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics.Nat.Commun.,2017,8:13828-1-8.
    [37]LIU H,SHI X,XU F,et al.Copper ion liquid-like thermoelectrics.Nat.Mater.,2012,11(5):422-425.
    [38]QIU W,XI L,WEI P,et al.Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy.PNAS,2014,111(42):15031-15035.
    [39]LI W,LIN S,GE B,et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6.Advanced Science,2016,3(11):1600196-1-7.
    [40]ZHANG X,CHEN Z,LIN S,et al.Promising thermoelectric Ag5-δTe3 with intrinsic low lattice thermal conductivity.ACS Energy Letters,2017,2(10):2470-2477.
    [41]LI WEN,LIN SIQI,WEISS MANUEL,et al.Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6.Advanced Energy Materials,2018,8:1800030-1-8.
    [42]MORELLI D T,JOVOVIC V,HEREMANS J P.Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors.Phys.Rev.Lett.,2008,101(3):035901-1-4.
    [43]GUIN S N,NEGI D S,DATTA R,et al.Nanostructuring,carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2-ZnSe.Journal of Materials Chemistry A,2014,2(12):4324-4331.
    [44]HONG A J,GONG J J,LI L,et al.Predicting high thermoelectric performance of ABX ternary compounds NaMgX(X=P,Sb,As)with weak electron-phonon coupling and strong bonding anharmonicity.J.Mater.Chem.C,2016,4(15):3281-3289.
    [45]LIN S,LI W,LI S,et al.High thermoelectric performance of Ag9Ga Se6 enabled by low cutoff frequency of acoustic phonons.Joule,2017,1(4):816-830.
    [46]NIELSEN M D,OZOLINS V,HEREMANS J P.Lone pair electrons minimize lattice thermal conductivity.Energy Environ.Sci.,2013,6(2):570-578.
    [47]MA J,DELAIRE O,MAY A F,et al.Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2.Nat.Nano,2013,8(6):445-451.
    [48]LI D,QIN X Y,ZOU T H,et al.High thermoelectric properties for Sn-doped AgSbSe2.Journal of Alloys and Compounds,2015,635:87-91.
    [49]GUIN S N,CHATTERJEE A,NEGI D S,et al.High thermoelectric performance in tellurium free p-type AgSbSe2.Energy&Environmental Science,2013,6(9):2603-2608.
    [50]GUIN S N,CHATTERJEE A,BISWAS K.Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping.RSC Advances,2014,4(23):11811-11815.
    [51]CAI S,LIU Z,SUN J,et al.Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2.Dalton Trans,2015,44(3):1046-1051.
    [52]PAN L,BERARDAN D,DRAGOE N.High thermoelectric properties of n-type AgBiSe2.J.Am.Chem.Soc.,2013,135(13):4914-4917.
    [53]ZOU M,LIU Q,WU C F,et al.Comparing the role of annealing on the transport properties of polymorphous AgBiSe2 and monophase AgSbSe2.RSC Advances,2018,8(13):7055-7061.
    [54]XIAO C,QIN X,ZHANG J,et al.High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide.J.Am.Chem.Soc.,2012,134(44):18460-18466.
    [55]GAO W,WANG Z,HUANG J,et al.Extraordinary thermoelectric performance realized in hierarchically structured AgSbSe2 with ultralow thermal conductivity.ACS Appl.Mater.Interfaces,2018,10(22):18685-18692.
    [56]HONG M,CHEN Z G,YANG L,et al.Achieving ZT>2 in p-type AgSbTe2-xSex alloys via exploring the extra light valence band and introducing dense stacking faults.Advanced Energy Materials,2018,8(9):1702333-1-7.
    [57]TADAMASA H,KAZUHIRO K,MOTOHISA H.Phase diagrams of the pseudo-binary Cu2Se-Bi2Se3 and Ag2Se-Bi2Se3 systems and thermoelectric properties of Cu2Se-Bi2Se3 solid solution.Advanced Energy Conversion,1966,6(4):195-200.
    [58]WERNICK J H,GELLER S,BENSON K E.Constitution of the AgSbSe2-AgSbTe2-AgBiSe2-AgBiTe2 system.Journal of Physics&Chemistry of Solids,1958,7(2):240-248.
    [59]MANOLIKAS C,SPYRIDELIS J.Electron microscopic study of polymorphismand defects in AgBiSe2 and AgBiS2.Mat.Res.Bull.,1977,12:907-913.
    [60]GELLER S,WERNICK J H.Ternary semiconducting compounds with sodium chloride-like structure-AgSbSe2,AgSbTe2,AgBiS2,AgBiSe2.Inorganic Chemistry,2001,20(7):2246-2250.
    [61]HOANG K,MAHANTI S D.Atomic and electronic structures of I-V-VI2 ternary chalcogenides.Journal of Science:Advanced Materials and Devices,2016,1(1):51-56.
    [62]WU H J,WEI P C,CHENG H Y,et al.Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials.Acta Materialia,2017,141:217-229.
    [63]LIU X C,JIN D,LIANG X.Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping.Applied Physics Letters,2016,109(13):133901-1-5.
    [64]GOTO Y,NISHIDA A,NISHIATE H,et al.Effect of Te substitution on crystal structure and transport properties of AgBiSe2 thermoelectric material.Dalton Trans.,2018,47(8):2575-2580.
    [65]GUIN S N,SRIHARI V,BISWAS K.Promising thermoelectric performance in n-type AgBiSe2:effect of aliovalent anion doping.Journal of Materials Chemistry A,2015,3(2):648-655.
    [66]BHANDARI C M,ROWE D M.Optimization of Carrier Concentration.In CRC Handbook of Thermoelectrics,Rowe,D.M.,Ed.Boca Raton:CRC Press,1995:43-53.
    [67]PEI Y Z,GIBBS Z M,GLOSKOVSKII A,et al.Optimum carrier concentration in n-type PbTe thermoelectrics.Advanced Energy Materials,2014,4(13):1400486-1-12.
    [68]ZHANG X Y,PEI Y Z.Manipulation of charge transport in thermoelectrics.npj Quantum Materials,2017,2:68-1-5.
    [69]LI W,CHEN Z,LIN S,et al.Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys.Journal of Materiomics,2015,1(4):307-315.
    [70]GIBBS Z M,LALONDE A,SNYDER G J.Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy.New Journal of Physics,2013,15(7):075020-1-18.
    [71]PARKER D S,MAY A F,SINGH D J.Benefits of carrier-pocket anisotropy to thermoelectric performance:the case of p-type AgBiSe2.Physical Review Applied,2015,3(6):064003-1-11.
    [72]BOCHER F,CULVER S P,PEILSTOCKER J,et al.Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics.Dalton Trans,2017,46(12):3906-3914.
    [73]ROUFOSSE M,KLEMENS P G.Thermal conductivity of complex dielectric crystals.Physical Review B,1973,7(12):5379-5386.
    [74]SANDITOV D S,BELOMESTNYKH V N.Relation between the parameters of the elasticity theory and averaged bulk modulus of solids.Technical Physics,2011,56(11):1619-1623.
    [75]BHARDWAJ A,RAJPUT A,SHUKLA A K,et al.Mg3Sb2-based Zintl compound:a non-toxic,inexpensive and abundant thermoelectric material for power generation.RSC Advances,2013,3:8504-8516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700