用户名: 密码: 验证码:
高盐油藏聚合物微球缓膨性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Slow swelling properties of polymer microspheres in high salt reservoirs
  • 作者:王威 ; 卢祥国 ; 吕金龙 ; 王晓燕 ; 张立东
  • 英文作者:Wang Wei;Lu Xiangguo;Lü Jinlong;Wang Xiaoyan;Zhang Lidong;Key Laboratory of Enhanced Oil Recovery of Education Ministry,Petroleum Engineering Institute,Northeast Petroleum University;Tuha Oil?eld Engineering and Technology Research Institute;
  • 关键词:高盐油藏 ; 聚合物微球 ; 粒径 ; 粒径分布 ; 水化膨胀 ; 机理分析
  • 英文关键词:high salt reservoir;;polymer microsphere;;particle size;;particle size distribution;;hydration expansion;;mechanism analysis
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:东北石油大学石油工程学院提高油气采收率教育部重点实验室;中国石油吐哈油田工程技术研究院;
  • 出版日期:2019-03-15
  • 出版单位:石油化工
  • 年:2019
  • 期:v.48
  • 基金:十三五国家科技重大专项项目(2016ZX05058-003-010);; 国家自然科学基金项目(51574086);; 中国石油天然气股份有限公司吐哈油田分公司重点科技攻关课题(GCYHZC2018)
  • 语种:中文;
  • 页:SYHG201903010
  • 页数:6
  • CN:03
  • ISSN:11-2361/TQ
  • 分类号:61-66
摘要
针对吐哈雁木西油田高矿化度的油藏条件,利用均质岩心评价聚合物微球封堵性能和缓膨效果,对4种微球的水化膨胀规律进行研究。实验结果表明,在注入水配制微球条件下,微球C膨胀倍数为2.61~2.66,微球A为1.32~1.70,微球B粒径逐渐减小;在软化水条件下,微球A2(1 800 mg/L)膨胀倍数为3.92~4.27,微球A1较微球A2缓膨性稍差,但水溶性较好,微球B粒径呈现先减小后趋于稳定的变化趋势,微球C水化膨胀作用效果较差;软化水配制微球会造成部分微球材料溶解于水中,致使微球数量减少,其中微球C最明显,会发生絮状沉淀,搅拌后絮状物消失;注入水配制微球C会发生漂浮现象;与微球C相比较,岩心孔隙内微球A2引起的注入压力、阻力系数和残余阻力系数较大,表明微球A2水化膨胀效果较好,液流转向能力较强。
        Aiming at the reservoir conditions with high salinity in Yanmuxi Oilfield,Tuha,the plugging performance and retarding expansion effect of polymer microspheres were evaluated by homogeneous cores,and the hydration expansion rules of four microspheres were studied. The results showed that the swelling ratio of microspheres C was 2.61-2.66,and A was 1.32-1.70,while the diameter of microspheres B was gradually reduced. The swelling ratio of microspheres A2(1 800 mg/L) was 3.92-4.27 under softening water condition. The swelling ratio of microspheres A1 was slightly lower than that of microspheres A2,but the water solubility was better. The particle size of microspheres B showed a trend of decreasing ?rst and then tending to be stable. The effect of hydration and expansion of microspheres C was poor. Compared with injected water,softening water could cause some microspheres to dissolve in water and decrease the number of microspheres,especially the microspheres C. In addition,Floating phenomenon would occur in the preparation of the microspheres C by water injection,and flocculent precipitation would occur in the softened water microspheres C and disappear after stirring. Compared with the microspheres C,the injection pressure,resistance coef?cient and residual resistance coef?cient caused by the microspheres A2 in core pores were larger,indicating that the hydration expansion effect was better and the liquid ?ow turning ability was stronger.
引文
[1]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2002(3):1-6,81.
    [2]苑盛旺.抗盐聚合物缔合程度及其油藏适应性研究[D].大庆:东北石油大学,2016.
    [3]韩海英,李俊键.聚合物微球深部液流转向油藏适应性[J].大庆石油地质与开发,2013,32(6):112-116.
    [4]张云宝.高温高矿化度油藏聚合物驱油技术研究[D].大庆:大庆石油学院,2008.
    [5]胡俊燕.高强度高耐温聚合物纳米微球调驱剂的研究[D].成都:成都理工大学,2014.
    [6]赵方园,姚峰,王晓春,等.新型表面活性聚合物驱油剂室内性能研究[J].石油化工,2017,46(8):1043-1048.
    [7]鞠野,徐国瑞,铁磊磊,等.高温高矿化度油藏调驱用纳米微球HP-2体系的研究[J].辽宁石油化工大学学报,2018,38(4):31-35.
    [8]鲁光亮,王健,鲁道素,等.孔喉尺度调堵剂微球在高温高盐条件下的性能[J].新疆石油地质,2009,30(6):748-750.
    [9]蒲万芬,赵帅,袁成东,等.耐温抗盐聚合物微球/表面活性剂交替段塞调驱实验研究[J].油气藏评价与开发,2016,6(4):69-73.
    [10]金玉宝,卢祥国,谢坤,等.聚合物微球油藏适应性评价方法及调驱机理研究[J].石油化工,2017,46(7):925-933.
    [11]孙哲,吴行才,康晓东,等.连续相与分散相驱油体系驱油机理及其性能对比[J].石油勘探与开发,2019(1):1-9.
    [12]孙哲.聚合物微球油藏适应性评价方法及调驱机理研究[D].大庆:东北石油大学,2017.
    [13]许博文,欧阳传湘,邹斌,等.高温高盐油藏聚合物纳米微球调驱研究[J].当代化工,2016,45(10):2306-2308.
    [14]赵应方.耐温耐盐深部调驱剂的制备及注入参数优化研究[J].石油化工高等学校学报,2017,30(4):43-47.
    [15]冯轶.塔河油田碎屑岩调堵剂的研究与应用[D].成都:西南石油大学,2016.
    [16]娄兆彬,李涤淑,范爱霞,等.中原油田文25东块聚合物微球调驱研究与应用[J].断块油气田,2012,19(5):646-650.
    [17]李强,梁守成,吕鑫,等.交联聚合物溶液成胶动态特征及其机理[J].大庆石油地质与开发,2017,36(4):87-94.
    [18]卢祥国,王伟. Al3+交联聚合物分子构型及其影响因素[J].物理化学学报,2006(5):631-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700