用户名: 密码: 验证码:
液压缓冲滑车碰撞试验力学建模及数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical Modeling and Numerical Analysis on the Vehicle Collision Test with Hydraulic Buffer
  • 作者:孙驰 ; 王家顺 ; 安琦
  • 英文作者:SUN Chi;WANG Jiashun;AN Qi;School of Mechanical and Power Engineering, East China University of Science and Technology;
  • 关键词:滑车碰撞 ; 液压缓冲 ; 力学建模 ; 数值计算 ; 性能研究
  • 英文关键词:sled collision;;hydraulic buffer;;mechanical modeling;;numerical calculation;;performance study
  • 中文刊名:HLDX
  • 英文刊名:Journal of East China University of Science and Technology
  • 机构:华东理工大学机械与动力工程学院;
  • 出版日期:2019-02-28
  • 出版单位:华东理工大学学报(自然科学版)
  • 年:2019
  • 期:v.45
  • 基金:上海市设计学Ⅳ类高峰学科项目(DA17014)
  • 语种:中文;
  • 页:HLDX201901023
  • 页数:8
  • CN:01
  • ISSN:31-1691/TQ
  • 分类号:173-180
摘要
以液压缓冲滑车碰撞试验装置为研究对象,应用有关力学和流体力学理论,对碰撞过程中滑车和液压缸活塞的受力、运动以及液压缸的压力变化进行了分析。根据能量守恒原理,构建了滑车碰撞过程的力学模型和能量守恒模型,采用离散求解方法,对所建立的模型实现了数值求解。针对某一具体算例,深入研究了滑车质量、初始碰撞速度、阻尼孔直径等参数对碰撞过程的性能影响,得到了一系列规律性的曲线。结果表明:滑车的加速度随初始碰撞速度、阻尼孔长度增大而增大,随滑车质量、阻尼孔间距的增大而减小;碰撞过程中,滑车质量越大,滑车速度降低得越慢;阻尼孔长度越大、阻尼孔直径越小,速度变化得越快;滑车位移随滑车质量、初始碰撞速度、阻尼孔间距、阻尼孔直径的增大而增大,随阻尼孔长度的增大而减小。
        The vehicle safety test includes two types of real vehicle collision and sled collision test(car simulation collision). The expensive actual vehicle crash test has a long preparation cycle and poor waveform reproducibility which is generally used only for product certification. The sled crash test can obtain the test results similar to the actual vehicle collision, and it is therefore widely used. In recent years, hydraulic bumper crash has become an important research direction. In this work, the vehicle collision test device of hydraulic buff is taken as the research target. By using the mechanics and fluid mechanics theory, the force and movement of the sled and the hydraulic cylinder piston and hydraulic cylinder pressure changes are analyzed. According to the principle of conservation of energy, the mechanical model and the energy conservation model of the sled collision process are established. By using discrete solution method, the established model is solved numerically. For a specific example, the influences of the parameters such as mass of the sled, the initial collision speed and the diameter of the damp hole on the collision process are thoroughly studied and a series of regular curves are obtained. The acceleration of the sled increases with the initial collision speed and the length of the damp hole, but it decreases with the mass of the sled and the distance between the damping holes. During the collision process, the more the mass of sled is, the slower its speed gets; the longer the length of the damping hole is and the smaller the diameter of the damping hole is, the faster the speed changes. The sled displacement increases with the mass of the sled, the initial collision speed, the distance between the damp hole and the diameter of the damp hole, while it decreases with the length of the damp hole.
引文
[1] 胡玉梅, 曾繁林, 张科峰, 等.台车试验中钢板布置的研究[J]. 汽车工程, 2012, 34(6): 496-501.
    [2] 赵伟, 黄钰曌, 等.高速液压缸活塞式缓冲机构的研究[J].中国机械工程, 2014, 25(8): 1033-1036.
    [3] 魏忠永, 赵鸿飞, 刘佳, 等.高压断路器液压操动机构油缸缓冲过程仿真与试验[J].农业机械学报, 2010, 41(6): 216-221.
    [4] LI P X, LI X M. Design of the hydraulic absorber for hydraulic catapult system[C]//Proceedings of 2011 International Conference on Fluid Power and Mechatronics. [s.l.]: IEEE, 2011: 213-216.
    [5] 张文斌, 周晓军.液压缓冲器特性计算与仿真分析[J].农业机械学报, 2008(7): 164-168.
    [6] 史华成, 高彩云, 沈亮.一种力值可调式液压缓冲器的仿真与分析[J].液压与气动,2013(5): 69-71.
    [7] 卓耀彬.液压缓冲器特性及其检测方法研究[D].杭州: 浙江大学, 2006.
    [8] MURALI B N, 谢金方. 液压缸缓冲过程的分析[J]. 重型机械, 1980(4): 44-47.
    [9] HU J W, ZHANG J H, ZHANG C Y. Dynamic simulation of the hydraulic shock absorber for sled impact test[J]. Mechanics & Engineering, 2003, 25(4): 17-20.
    [10] DESHPANDE V S, FLECK N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298.
    [11] JIMENEZ M, MARTINEZ J, FIGUEROA U, et al. Finite element simulation of mechanical bump shock absorber for sled tests[J]. International Journal of Automotive Technology, 2015, 16(1): 167-172.
    [12] 王俊.新型气液混合动力弹射系统的研究[D].杭州: 浙江工业大学, 2012.
    [13] 刘巍.微通道蒸发器的优化设计及流量分配特性研究[D].南京: 南京航空航天大学, 2013.
    [14] 金朝铭.液压流体力学[M].北京: 国防工业出版社, 1994.
    [15] 肖士珩.液压缸O形密封圈产生的摩擦力的计算[J].江西理工大学学报, 2001, 22(1): 18-20.
    [16] 牛晓阳.液压缸静压支承导向套性能研究[D].武汉:武汉科技大学, 2014.
    [17] 王纪森, 林志纲.基于AMESim的负载敏感系统仿真与分析[J].机床与液压, 2012, 40(8): 78-79.
    [18] 于润生.液压密封圈有限元分析与研究[D].天津: 天津理工大学, 2012.
    [19] ZHAO M, ZOU J B, LIU K, et al. Analysis and optimization of thrust characteristics of tubular transverse flux permanent magnet linear machine for electromagnetic launcher[C]//International Conference on Electrical Machines and Systems. Incheon, South Korea, IEEE, 2010: 1654-1656.
    [20] 董继先, 吴春英.流体传动与控制[M].北京: 国防工业出版社, 2008: 24-28.
    [21] LI L, MA M, KOU B, et al. Analysis and design of moving-magnet-type linear synchronous motor for electromagnetic launch system[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 121-126.
    [22] 王家顺, 安琦.汽车碰撞试验中碰撞过程的运动及力学性能[J].华东理工大学学报(自然科学版), 2017, 43 (6): 863-870.
    [23] MIRZAEI M, ABDOLLAHI S E. Design optimization of reluctance-synchronous linear machines for electromagnetic aircraft launch system[J]. IEEE Transactions on Magnetics, 2008, 45(1): 389-395.
    [24] GULER M, CERIT M, BERTAN BAYRAM, et al. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading[J]. International Journal of Crashworthiness, 2010, 15(4): 377-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700