用户名: 密码: 验证码:
磷酸工业硫化砷渣氧化浸出浸出动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Oxidative Leaching and Kinetics of Arsenic Sulfide Slag from Phosphoric Acid Industry
  • 作者:刘凯 ; 赵侣璇 ; 张立宏 ; 徐荣乐 ; 樊勇吉 ; 覃楠钧 ; 宋晓薇 ; 谢祎敏 ; 黄业翔
  • 英文作者:LIU Kai;ZHAO Lv-xuan;ZHANG Li-hong;XU Rong-le;FAN Yong-ji;QIN Nan-jun;SONG Xiao-wei;XIE Yi-min;HUANG Ye-xiang;Guangxi Academy of Environmental Protection Sciences;
  • 关键词:硫化砷渣 ; 氧化浸出 ; 浸出动力学
  • 英文关键词:Arsenic sulfide slag;;Oxidative leaching;;Leaching kinetics
  • 中文刊名:JSHJ
  • 英文刊名:Environmental Science and Technology
  • 机构:广西壮族自治区环境保护科学研究院;
  • 出版日期:2019-02-15
  • 出版单位:环境科技
  • 年:2019
  • 期:v.32;No.165
  • 基金:广西科技计划项目(桂科AB17129025);; 广西镉砷危险废物处置工程技术研究中心组建(2016GCZX008)
  • 语种:中文;
  • 页:JSHJ201901008
  • 页数:5
  • CN:01
  • ISSN:32-1786/X
  • 分类号:39-43
摘要
磷酸生产过程中磷酸净化脱砷工艺产生的硫化砷渣属于危险固体废物,环境危害大,但因其含砷量高,同时也是一种具有较高回收价值的砷资源。采用过氧化氢作为氧化剂在酸性条件下对磷酸厂硫化砷渣进行氧化浸出,考察了浸出温度、过氧化氢用量、浸出时间在氧化浸出实验中对砷浸出的影响,实验结果表明:控制浸出温度为95℃,V(过氧化氢,mL):m(硫化砷渣,g)为1.5:1,浸出时间为2 400 s的条件下,砷浸出率达到99.20%。通过对不同浸出温度下硫化砷渣浸出动力学的研究,结果表明:在酸性条件下,过氧化氢浸出硫化砷过程符合未反应收缩核模型,浸出反应的表观活化能为22.82 kJ/mol,浸出过程受扩散控制。
        Arsenic sulfide slag from phosphoric acid industry is a kind of hazardous waste, which is harmful to the environment. However, the slag is also a kind of arsenic resource due to its high arsenic content. This study worked on the leaching of arsenic sulfide slag with hydrogen peroxide as oxidant. The effects of leaching temperature, hydrogen peroxide dosage and leaching time on the leaching of arsenic were investigated. The results show that arsenic leaching rate of 99.20%was obtained, as the leaching temperature was 95 ℃, the ratio of hydrogen peroxide(solution, mL) and arsenic sulfide residue(solid, g) was 1.5 : 1, and leaching time was 2 400 s. The kinetics study shows that the leaching process was applicable to the shrinking core model and the apparent active energy was 22.82 kJ/mol, that means the leaching process was controlled by mass diffusion.
引文
[1]GUO L,DU Y G,YI Q S,et al.Efficient removal of arsenic from dirty acid wastewater by using a novel immersed multi-start distributor for sulphide feeding[J].Sep purif technol.,2015,142:209-214.
    [2]ZHAO H,XIA B C,FAN C,et al.Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine,Southern China[J].Sci total environ.,2012,417/418:45-54.
    [3]肖愉,吴竞宇.硫化砷渣的固定化/稳定化处理[J],环境科技,2014,27(6):42-44.
    [4]肖愉.硫化砷渣的无害化处理研究[J],环境科技,2015,28(5):8-11.
    [5]KOSTEN E D,ATWATER J H,PARSONS J,et al.Highly efficient GaAs solar cells by limiting light emission angle[J].Light:-sci&app,2013,2(1):45-50.
    [6]崔洁,杜亚光,刘芫,等.工业硫化砷渣的性质研究与环境风险分析[J].硫酸工业,2013(2):41-46.
    [7]石靖,易宇,郭学益.湿法冶金处理含砷固废的研究进展[J].有色金属科学与工程,2015,6(2):14-20.
    [8]SONG S,VALDIVIESO A L,D J HERNANDEZ-CAMPOS,et al.Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J].Water res,2006,40(2):364-372.
    [9]罗良华.硫化砷渣中回收砷、铜、硫的生产实践[J].江西铜业工程,1997(1):5-7.
    [10]张洪,黄宗凯,何政兵.硫化砷渣中砷浸出特性研究[J].云南化工,2014,41(6):15-18.
    [11]白猛,郑雅杰,刘万宇,等.硫化砷渣的碱性浸出浸出动力学[J].中南大学学报,2008,39(2):268-272.
    [12]王玉棉,徐瑞,赵忠兴,等.砷滤饼制备砷酸铜的影响因素及工艺优化[J].兰州理工大学学报,2013,39(2):5-8.
    [13]黎铉海,李志强,郭敏.次氯酸钠一步法从磷酸富砷渣中浸砷的工艺研究[J].广西大学学报,2014,39(6):1 399-1 402.
    [14]蒋慧明.砷钼蓝法测定硫酸生产废水中的砷含量[J].硫酸工业,2008(6):37-39.
    [15]金哲男,蒋开喜,魏绪钧,等.高温As-S-H2O系电位-pH图[J].矿冶,1999,8(4):45-50.
    [16]肖红霞,崔洁,齐越,等.一种从硫化砷渣中回收砷的新方法[J].硫酸工业,2014(5):53-57.
    [17]CRUNDWELL F K.Kinetics and mechanism of the oxidative dissolution of a zinc sulphide concentrate in ferric sulphate solutions[J].Hydrometallurgy,1987,19(2):227-242.
    [18]CHI R,ZHU G,XU S,et al.Kinetics of manganese reduction leaching from weathered rare-earth mud with sodium sulfite[J].Metallurgical and materials transactions b,2002,33(1):41-46.
    [19]SONMEZ S,AKTAS S,ACMA E.A Study on the treatment of waste in hot dip galvanizing plants[J].Canadian metallurgical quarterly,2003,42(3):289-300.
    [20]傅献彩,陈瑞化.物理化学:下册[M].北京:人民教育出版社,1979:90-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700