用户名: 密码: 验证码:
生物炭添加对湿地植物菖蒲根系通气组织和根系泌氧的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influences of Biochar Application on Root Aerenchyma and Radial Oxygen Loss of Acorus calamus in Relation to Subsurface Flow in a Constructed Wetland
  • 作者:黄磊 ; 梁银坤 ; 梁岩 ; 罗星 ; 陈玉成
  • 英文作者:HUANG Lei;LIANG Yin-kun;LIANG Yan;LUO Xing;CHEN Yu-cheng;College of Resources and Environment,Southwest University;Chongqing Engineering Research Center of Rural Cleaning;
  • 关键词:生物炭 ; 潜流人工湿地 ; 菖蒲 ; 根系通气组织 ; 根系泌氧(ROL)
  • 英文关键词:biochar;;subsurface flow constructed wetland;;Acorus calamus L.;;root aerenchyma;;radial oxygen loss(ROL)
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西南大学资源环境学院;农村清洁工程重庆市工程研究中心;
  • 出版日期:2018-10-15 16:46
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51408493);; 重庆市基础与前沿研究计划项目(cstc2016jcyjA0523)
  • 语种:中文;
  • 页:HJKZ201903029
  • 页数:7
  • CN:03
  • ISSN:11-1895/X
  • 分类号:272-278
摘要
在处理污水的潜流人工湿地中,湿地植物容易受到缺氧胁迫.尽管菖蒲(Acorus calamus L.)是一类对缺氧条件具有显著抵抗能力的湿地植物,但菖蒲的生理响应并不能完全消除湿地长期缺氧带来的胁迫.生物炭添加能够缓解菖蒲体内超氧化物和过氧化物的积累,显著降低膜脂过氧化程度,但生物炭对缓解缺氧胁迫的具体机制尚不清晰.因此,本研究通过在温室内构建5种不同的生物炭湿地,采用植物生态学分析方法,将植物根系通气组织、根孔隙度和根系泌氧相结合,研究菖蒲根部组织对生物炭添加的响应机制.结果表明,通过在传统潜流人工湿地中添加生物炭,有利于菖蒲形成根系通气组织,增大根孔隙度,生物炭投加量与根孔隙度具有显著正相关关系.在湿地中添加生物炭将利于O_2通过通气组织传输至地下部分,并以根系泌氧(radial oxygen loss,ROL)的形式扩散至根际,显著提高根系泌氧量.与其它光强相比,在3 000μmol·(m~2·s)~(-1)条件下,菖蒲泌氧能力较强,生物炭投加比例对植物ROL的影响不显著.
        In the subsurface flow of a constructed wetland( CW) used for treating wastewater,low oxygen diffusion results in long-term anoxic or anaerobic surroundings,which cannot meet the needs of plant respiration and poses a threat to the survival of macrophytes.Although sweet sedge( Acorus calamus L.) has a significant ability to resist hypoxia,membrane lipid oxidation would still occur in the plant due to the long-term hypoxia in the CW. According to reports in the existing literature,activation of the antioxidative response system could be promoted by adding biochar,thereby significantly decreasing the malonic dialdehyde in the plants. However,the specific reasons why biochar alleviates the stress from anoxia are still not clear. Thus,the responses of macrophyte roots to biochar application were studied in five different CWs built in a greenhouse,using plant ecology analyses combined with root aerenchyma,root porosity,and radial oxygen loss( ROL). The results showed that adding biochar to CW was beneficial for sweet sedge to form root aerenchyma and to increase root porosity. Moreover,there was a significant positive correlation between root porosity and the amount of biochar applied. Photosynthetic metabolism could be indirectly promoted by biochar application by increasing oxygen partial pressure in the blades,helping to transport O_2 to underground parts through aerenchyma,and spreading O_2 to the rhizosphere in the form of ROL.The reduction environment could be improved by applying biochar in CWs,which was also beneficial for ROL. Compared with other light conditions,3 000 μmol·( m~2·s)~(-1) was more suitable for the growth of A. calamus in CWs with biochar,where the ability of the plants to secrete oxygen would be stimulated and enhanced. However,the effect of the biochar application ratio on ROL was not significant.
引文
[1]汪健,李怀正,甄葆崇,等.间歇曝气对垂直潜流人工湿地脱氮效果的影响[J].环境科学,2016,37(3):980-987.Wang J,Li H Z,Zhen B C,et al.Effect of intermittent aeration on nitrogen removal efficiency in vertical subsurface flow constructed wetland[J].Environmental Science,2016,37(3):980-987.
    [2]Loreti E,van Veen H,Perata P.Plant responses to flooding stress[J].Current Opinion in Plant Biology,2016,33:64-71.
    [3]Vretare V,Weisner S E B.Influence of pressurized ventilation on performance of an emergent macrophyte(Phragmites australis)[J].Journal of Ecology,2000,88(6):978-987.
    [4]Srivastava P,Dwivedi S,Kumar N,et al.Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems[J].Bioresource Technology,2017,244:1178-1182.
    [5]Armstrong J,Jones R E,Armstrong W.Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential,convective gas flow,submergence and aeration pathways[J].New Phytologist,2006,172(4):719-731.
    [6]Bedford B L,Bouldin D R,Beliveau B D.Net oxygen and carbon-dioxide balances in solutions bathing roots of wetland plants[J].Journal of Ecology,1991,79(4):943-959.
    [7]Chen H J,Qualls R G,Miller G C.Adaptive responses of Lepidium latifolium to soil flooding:biomass allocation,adventitious rooting,aerenchyma formation and ethylene production[J].Environmental and Experimental Botany,2002,48(2):119-128.
    [8]Li H,Ye Z H,Wei Z J,et al.Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants[J].Environmental Pollution,2011,159(1):30-37.
    [9]Lemoine D G,Mermillod-Blondin F,Barrat-Segretain M H,et al.The ability of aquatic macrophytes to increase root porosity and radial oxygen loss determines their resistance to sediment anoxia[J].Aquatic Ecology,2012,46(2):191-200.
    [10]Han C,Ren J H,Wang Z D,et al.Characterization of phosphorus availability in response to radial oxygen losses in the rhizosphere of Vallisneria spiralis[J].Chemosphere,2018,208:740-748.
    [11]Deng H,Ye Z H,Wong M H.Lead,zinc and iron(Fe2+)tolerances in wetland plants and relation to root anatomy and spatial pattern of ROL[J].Environmental and Experimental Botany,2009,65(2-3):353-362.
    [12]Wu C,Zou Q,Xue S G,et al.The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss(ROL)[J].Environmental Pollution,2016,212:27-33.
    [13]Williams P N,Santner J,Larsen M,et al.Localized flux maxima of arsenic,lead,and iron around root apices in flooded lowland rice[J].Environmental Science&Technology,2014,48(15):8498-8506.
    [14]Dullo B W,Grootjans A P,Roelofs J G M,et al.Radial oxygen loss by the cushion plant Eriocaulon schimperi prevents methane emissions from an East-African mountain mire[J].Plant Biology,2017,19(5):736-741.
    [15]Kotula L,Schreiber L,Colmer T D,et al.Anatomical and biochemical characterisation of a barrier to radial O2loss in adventitious roots of two contrasting Hordeum marinum accessions[J].Functional Plant Biology,2017,44(9):845-857.
    [16]Lai W L,Zhang Y,Chen Z H.Radial oxygen loss,photosynthesis,and nutrient removal of 35 wetland plants[J].Ecological Engineering,2012,39:24-30.
    [17]黄磊,陈玉成,赵亚琦,等.生物炭添加对湿地植物生长及氧化应激响应的影响[J].环境科学,2018,39(6):2904-2910.Huang L,Chen Y C,Zhao Y Q,et al.Influence of biochar application on growth and antioxidative responses of macrophytes in subsurface flow constructed wetlands[J].Environmental Science,2018,39(6):2904-2910.
    [18]Huang L,Chen Y C,Liu G,et al.Non-isothermal pyrolysis characteristics of giant reed(Arundo donax L.)using thermogravimetric analysis[J].Energy,2015,87:31-40.
    [19]Mei X Q,Ye Z H,Wong M H.The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw[J].Environmental Pollution,2009,157(8-9):2550-2557.
    [20]Jensen S I,Kühl M,Glud R N,et al.Oxic microzones and radial oxygen loss from roots of Zostera marina[J].Marine Ecology Progress Series,2005,293:49-58.
    [21]Mei X Q,Yang Y,Tam N F Y,et al.Roles of root porosity,radial oxygen loss,Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater[J].Water Research,2014,50:147-159.
    [22]Lasfar S,Monette F,Millette L,et al.Intrinsic growth rate:a new approach to evaluate the effects of temperature,photoperiod and phosphorus-nitrogen concentrations on duckweed growth under controlled eutrophication[J].Water Research,2007,41(11):2333-2340.
    [23]Allen L H Jr.Mechanisms and rates of O2transfer to and through submerged rhizomes and roots via aerenchyma[J].Annual Proceedings Soil and Crop Science Society of Florida,1997,56:41-54.
    [24]Grosse W,Frick H J.Gas transfer in wetland plants controlled by Graham's law of diffusion[J].Hydrobiologia,1999,415:55-58.
    [25]Jackson M,Armstrong W.Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence[J].Plant Biology,1999,1(3):274-287.
    [26]Cheng X Y,Wang M,Zhang C F,et al.Relationships between plant photosynthesis,radial oxygen loss and nutrient removal in constructed wetland microcosms[J].Biochemical Systematics and Ecology,2014,54:299-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700