用户名: 密码: 验证码:
超临界流体改质煤焦油研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on application of supercritical fluids to upgrade coal tar
  • 作者:陈康 ; 闫挺 ; 姜召 ; 方涛
  • 英文作者:CHEN Kang;YAN Ting;JIANG Zhao;FANG Tao;School of Chemical Engineering and Technology, Xi'an Jiaotong University;
  • 关键词:超临界水 ; 超临界甲醇 ; 改质 ; 煤焦油 ; 强化
  • 英文关键词:super critical water;;supercritical methanol;;upgrading;;coal tar;;process intensification
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:西安交通大学化学工程与技术学院;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:陕能源化工过程强化重点实验室项目(20160109-4)
  • 语种:中文;
  • 页:HGJZ201904012
  • 页数:12
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:113-124
摘要
中国是一个多煤少油的国家,煤制油技术在我国有着广泛的应用前景。由于超临界流体对有机物有较好的溶解性,因此越来越多地应用到煤焦油深加工过程中。本文总结了超临界流体改质煤焦油过程中,操作参数对煤焦油轻质化的影响和强化改质方法,重点分析了超临界水和超临界甲醇,超临界水改质煤焦油主要体现在物理上的溶解和分散作用,而超临界甲醇除此之外,有一定的供氢能力,可以为反应提供氢,但是供氢能力有限。因此,本文又讨论了添加催化剂、自由基引发剂、加氢等手段强化超临界流体改质煤焦油。在此基础上对超临界流体改质煤焦油进行了展望,将超临界流体的萃取和超临界改质耦合在一起,充分发挥超临界流体优越性;选择新的超临界流体、催化剂等促进煤焦油轻质化。
        Given the backdrop of China's coal-rich but oil and gas-short condition, the utilization rate of coal is not high. Developing the coal-to-liquid(CTL) technologies has a great potential for coal applications. Because supercritical fluids(SCF) have high solubility for a variety of organic compounds,they have been widely used to upgrade coal tar. This paper summarized the effect of operating parameters on the process of supercritical fluid upgrading coal tar, and the reaction mechanism, with a focuson the analysis of supercritical water(SCW) and supercritical methanol(SC-MeOH). Previous studies found that the SCW and SC-MeOH could modify coal tar mainly through the physical dissolution and dispersion.The SC-MeOH can also produce hydrogen but its capacity of supplying hydrogen is limited. Therefore,the addition of catalysts, free radical initiators, and hydrogenation were discussed to enhance supercritical coal tar upgrading process. Future research may focus on the combination of SCF extraction and reaction,developing and applying new types of SCF and catalysts.
引文
[1] ANGELES M J, LEYVA C, ANCHEYTA J, et al. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst[J]. Catalysis Today, 2014, 220/221/222:274-294.
    [2]李贵贤,曹彦伟,李梦晨,等.煤焦油加氢脱氮反应网络及催化剂研究进展[J].化工进展, 2015, 34(5):1283-1290.LI Guixian, CAO Yanwei, LI Mengchen, et al. Research progress in hydrodenitrogenation reaction network and its catalysts for coal tar[J].Chemical Industry and Engineering Progress, 2015, 34(5):1283-1290.
    [3] SUN Z, LI D, MA H, et al. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Processing Technology, 2015, 138:413-418.
    [4] KAN T, WANG H, HE H, et al. Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels[J]. Fuel, 2011, 90(11):3404-3409.
    [5] YUE Y, LI J, DONG P, et al. From cheap natural bauxite to highefficient slurry-phase hydrocracking catalyst for high temperature coal tar:a simple hydrothermal modification[J]. Fuel Processing Technology, 2018, 175:123-130.
    [6] YAN T, XU J, WANG L, et al. A review of upgrading heavy oils with supercritical fluids[J]. RSC Advances, 2015, 5(92):75129-75140.
    [7] BELLAN J. Supercritical(and subcritical)fluid behavior and modeling:drops, streams, shear and mixing layers, jets and sprays[J].Progress in Energy and Combustion Science, 2000, 26(4):329-366.
    [8] MACHIDA H, TAKESUE M, SMITH R L. Green chemical processes with supercritical fluids:properties, materials, separations and energy[J]. The Journal of Supercritical Fluids, 2011, 60:2-15.
    [9] TAKEBAYASHI Y, HOTTA H, SHONO A, et al. Spectroscopic study of acid-base equilibria and ion pairing in supercritical methanol[J].Journal of Solution Chemistry, 2009, 38(5):545-555.
    [10] JESSOP P G, IKARIYA T, NOYORI R. Homogeneous catalysis in supercritical fluids[J]. Chemical Reviews, 1999, 99(2):475-494.
    [11] HAN L, ZHANG R, BI J. Experimental investigation of high temperature coal tar upgrading in supercritical water[J]. Fuel Processing Technology, 2009, 90(2):292-300.
    [12] HAN L, ZHANG R, BI J, et al. Pyrolysis of coal tar asphaltene in supercritical water[J]. Journal of Analytical and Applied Pyrolysis,2011, 91(2):281-287.
    [13] KANG J, MYINT A A, SIM S, et al. Kinetics of the upgrading of heavy oil in supercritical methanol[J]. The Journal of Supercritical Fluids,2018, 133:133-138.
    [14] KOZHEVNIKOV I V, NUZHDIN A L, MARTYANOV O N.Transformation of petroleum asphaltenes in supercritical water[J]. The Journal of Supercritical Fluids, 2010, 55(1):217-222.
    [15] HAN L, ZHANG R, BI J. Upgrading of coal tar pitch in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1):1-5.
    [16] GU Z, CHANG N, HOU X, et al. Experimental study on the coal tar hydrocracking process in supercritical solvents[J]. Fuel, 2012, 91(1):33-39.
    [17] TIMKO M T, GHONIEM A F, GREEN W H. Upgrading and desulfurization of heavy oils by supercritical water[J]. The Journal of Supercritical Fluids, 2015, 96:114-123.
    [18] DEMIRBAS A. Sulfur removal from crude oil using supercritical water[J]. Petroleum Science and Technology, 2016, 34(7):622-626.
    [19] VILCáEZ J, WATANABE M, WATANABE N, et al. Hydrothermal extractive upgrading of bitumen without coke formation[J]. Fuel, 2012,102:379-385.
    [20] LIU J, XING Y, CHEN Y, et al. Visbreaking of heavy oil under supercritical water environment[J]. Industrial&Engineering Chemistry Research, 2018, 57(3):867-875.
    [21] KWEK W, KHAN M K, SARKAR B, et al. Supercritical methanol as an effective medium for producing asphaltenes-free light fraction oil from vacuum residue[J]. The Journal of Supercritical Fluids, 2018,133:184-194.
    [22] YAN T, CHEN K, WANG L, et al. Experimental investigation of upgrading heavy oil with supercritical methanol[J]. Energy&Fuels,2017, 31(6):5882-5890.
    [23]何选明,李铁鲁,王宽强,等.煤焦油超临界甲醇抽提反应过程特性的研究[J].煤炭转化, 2011, 34(02):59-63.HE Xuanming, LI Tielu, WANG Kuanqiang, et al. Study on the reaction properties of coal tar[J]. Coal Conversion, 2011, 34(02):59-63.
    [24] ZHANG D, REN Z, WANG D, et al. Upgrading of crude oil in supercritical water:a five-lumped kinetic model[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123:56-64.
    [25] GUDIYELLA S, LAI L, BORNE I H, et al. An experimental and modeling study of vacuum residue upgrading in supercritical water[J].AIChE Journal, 2018, 64(5):1732-1743.
    [26] LIU Q, ZHU D, TAN X, et al. Lumped reaction kinetic models for pyrolysis of heavy oil in the presence of supercritical water[J]. AIChE Journal, 2016, 62(1):207-216.
    [27] TAN X, LIU Q, ZHU D, et al. Pyrolysis of heavy oil in the presence of supercritical water:the reaction kinetics in different phases[J]. AIChE Journal, 2015, 61(3):857-866.
    [28] XIN S, LIU Q, WANG K, et al. Solvation of asphaltenes in supercritical water:a molecular dynamics study[J]. Chemical Engineering Science, 2016, 146:115-125.
    [29] ZHANG J, WENG X, HAN Y, et al. The effect of supercritical water on coal pyrolysis and hydrogen production:a combined Reax FF and DFT study[J]. Fuel, 2013, 108:682-690.
    [30] JIN H, WU Y, GUO L, et al. Molecular dynamic investigation on hydrogen production by polycyclic aromatic hydrocarbon gasification in supercritical water[J]. International Journal of Hydrogen Energy,2016, 41(6):3837-3843.
    [31] YUAN P Q, ZHU C C, LIU Y, et al. Solvation of hydrocarbon radicals in sub-CW and SCW:an ab initio MD study[J]. The Journal of Supercritical Fluids, 2011, 58(1):93-98.
    [32]韩丽娜,张荣,毕继诚.煤焦油及其组分在超临界水中的反应特性研究[J].燃料化学学报, 2008, 36(6):653-659.HAN Lina, ZHANG Rong, BI Jicheng. Reaction property of coal tar and its fractions in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2008, 36(6):653-659.
    [33]韩丽娜,张荣,毕继诚.超临界水中煤焦油沥青轻质化的实验研究[J].燃料化学学报, 2008, 36(1):1-5.HAN Lina, ZHANG Rong, BI Jicheng. Upgrading of coal tar pitch in supercritical water[J]. Journal of Fuel Chemistry and Technology,2008, 36(1):1-5.
    [34] MORIMOTO M, SUGIMOTO Y, SAOTOME Y, et al. Effect of supercritical water on upgrading reaction of oil sand bitumen[J]. The Journal of Supercritical Fluids, 2010, 55(1):223-231.
    [35] DUTTA R P, MCCAFFREY W C, GRAY M R, et al. Thermal cracking of Athabasca bitumen:influence of steam on reaction chemistry[J].Energy&Fuels, 2000, 14(3):671-676.
    [36] SCHLEPP L, ELIE M, LANDAIS P, et al. Pyrolysis of asphalt in the presence and absence of water[J]. Fuel Processing Technology, 2001,74(2):107-123.
    [37]马彩霞,张荣,毕继诚.煤焦油在超临界水中的改质研究[J].燃料化学学报, 2003, 31(2):103-110.MA Caixia, ZHANG Rong, BI Jicheng. Upgrading of coal tar in supercritical water[J]. Journal of Fuel Chemistry and Technology,2003, 31(2):103-110.
    [38] SATO T, ADSCHIRI T, ARAI K, et al. Upgrading of asphalt with and without partial oxidation in supercritical water[J]. Fuel, 2003, 82(10):1231-1239.
    [39] ZHAO L, CHENG Z, DING Y, et al. Experimental study on vacuum residuum upgrading through pyrolysis in supercritical water[J]. Energy&Fuels, 2006, 20(5):2067-2071.
    [40] CHENG Z, DING Y, ZHAO L, et al. Effects of supercritical water in vacuum residue upgrading[J]. Energy&Fuels, 2009, 23(6):3178-3183.
    [41] ZHU C, REN C, TAN X, et al. Initiated pyrolysis of heavy oil in the presence of near-critical water[J]. Fuel Processing Technology, 2013,111:111-117.
    [42] CHANG J, FUJIMOTO K, TSUBAKI N. Effect of initiative additives on hydro-thermal cracking of heavy oils and model compound[J].Energy&Fuels, 2003, 17(2):457-461.
    [43] LIU Y, BAI F, ZHU C, et al. Upgrading of residual oil in sub-and supercritical water:an experimental study[J]. Fuel Processing Technology, 2013, 106:281-288.
    [44] LI N, YAN B, ZHANG L, et al. Effect of NaOH on asphaltene transformation in supercritical water[J]. The Journal of Supercritical Fluids, 2015, 97:116-124.
    [45] FEDYAEVA O N, ANTIPENKO V R, VOSTRIKOV A A. Heavy oil upgrading at oxidation of activated carbon by supercritical wateroxygen fluid[J]. The Journal of Supercritical Fluids, 2017, 126:55-64.
    [46] SATO T, MORI S, WATANABE M, et al. Upgrading of bitumen with formic acid in supercritical water[J]. The Journal of Supercritical Fluids, 2010, 55(1):232-240.
    [47] LIU Q, XU Y, TAN X, et al. Pyrolysis of asphaltenes in subcritical and supercritical water:influence of H-donation from hydrocarbon surroundings[J]. Energy&Fuels, 2017, 31(4):3620-3628.
    [48] CLARK P D, KIRK M J. Studies on the upgrading of bituminous oils with water and transition metal catalysts[J]. Energy&Fuels, 1994, 8(2):380-387.
    [49] HOSSEINPOUR M, FATEMI S, AHMADI S J. Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgradingheavyoil.PartⅡ:Hydrogendonatingcapacityofwaterinthe presence of iron(Ⅲ)oxide nanocatalyst[J]. The Journal of Supercritical Fluids, 2016, 110:75-82.
    [50] HOSSEINPOUR M, FATEMI S, AHMADI S J. Catalytic cracking of petroleum vacuum residue in supercritical water media:impact ofα-Fe2O3intheformoffreenanoparticlesandsilica-supported granules[J]. Fuel, 2015, 159:538-549.
    [51] KOSARI M, GOLMOHAMMADI M, AHMADI S J, et al. On the catalysis capability of transition metal oxide nanoparticles in upgrading of heavy petroleum residue by supercritical water[J]. The Journal of Supercritical Fluids, 2017, 126:14-24.
    [52] BAI F, ZHU C, LIU Y, et al. Co-pyrolysis of residual oil and polyethylene in sub-and supercritical water[J]. Fuel Processing Technology,2013, 106:267-274.
    [53] SATO T. Upgrading of heavy oil by hydrogenation through partial oxidation and water-gas shift reaction in supercritical water[J]. Journal of the Japan Petroleum Institute, 2014, 57(1):1-10.
    [54] SATO T, SUMITA T, ITOH N. Effect of CO addition on upgrading bitumen in supercritical water[J]. The Journal of Supercritical Fluids,2015, 104:171-176.
    [55] FEDYAEVA O N, ANTIPENKO V R, VOSTRIKOV A A. Conversion of sulfur-rich asphaltite in supercritical water and effect of metal additives[J]. The Journal of Supercritical Fluids, 2014, 88:105-116.
    [56] FEDYAEVA O N, VOSTRIKOV A A. The products of heavy sulfurrich oil conversion in a counter supercritical water flow and their desulfurization by ZnO nanoparticles[J]. The Journal of Supercritical Fluids, 2016, 111:121-128.
    [57] CHANG N, GU Z. Kinetic model of low temperature coal tar hydrocracking in supercritical gasoline for reducing coke production[J]. Korean Journal of Chemical Engineering, 2014, 31(5):780-784.
    [58] ZHANG L, LIU Z, GU Z. Fuel oil production through hightemperature coal tar catalytic hydrocracking in supercritical xylene[J].Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2016, 38(22):3375-3382.
    [59]常娜,侯雄坡,刘宗宽,等.超临界汽油中煤焦油加氢裂化催化剂研究[J].化学工程, 2010, 38(8):83-86.CHANG Na, HOU Xiongpo, LIU Zongkuan, et al. Catalyst study for coal tar hydrocracking in supercritical gasoline[J]. Chemical Engineering(China), 2010, 38(8):83-86.
    [60] KHAN M K, KWEK W, KIM J. Conversion of petroleum emulsion into light fraction-rich upgraded oil in supercritical methanol[J]. Fuel,2018, 218:78-88.
    [61] KHAN M K, KWEK W, KIM J. Upgrading heavy crude oils and extra heavy fractions in supercritical methanol[J]. Energy&Fuels, 2017, 31(11):12054-12063.
    [62] KHAN M K, SARKAR B, ZEB H, et al. Simultaneous breaking and conversion of petroleum emulsions into synthetic crude oil with low impurities[J]. Fuel, 2017, 199:135-144.
    [63] KWEK W, KHAN M K, SARKAR B, et al. A non-catalytic,supercritical methanol route for producing high-yield saturated and aromatic compounds from de-oiled asphaltenes[J]. The Journal of Supercritical Fluids, 2017, 120:140-150.
    [64] SARKAR B, KWEK W, VERMA D, et al. Effective vacuum residue upgrading using sacrificial nickel(Ⅱ)dimethylglyoxime complex in supercritical methanol[J]. Applied Catalysis A:General, 2017,545:148-158.
    [65] ZHOU J, WANG W C, ZHONG C L. Molecular dynamics investigation of benzene in supercritical water[J]. Chinese Journal of Chemical Engineering, 2001, 9(2):196-199.
    [66]中华人民共和国国家能源局.石油沥青四组分测定法:NB/SH/T0509—2010[S].北京:中国标准出版社, 2010.National Energy Bureau of People's Republic of China. Test method of separation of asphalt into fractions:NB/SH/T0509—2010[S]. Beijing:Standards Press of China, 2010.
    [67] LUIK H, LUIK L. Extraction of fossil fuels with sub-and supercritical water[J]. Energy Sources, 2000, 23(5):449-459.
    [68] YEN T F. The colloidal aspect of a macrostructure of petroleum asphalt[J].FuelScienceandTechnologyInternational,1992,10(4/5/6):723-733.
    [69] PE SAVAGE M K S K. Asphaltene reaction pathways 3 effect of reaction environment[J]. Energy&Fuels, 1988, 2(5):619-628.
    [70] AKIYA N, SAVAGE P E. Roles of water for chemical reactions in high-temperature water[J]. Chemical Reviews, 2002, 102(8):2725-2750.
    [71] CONNOLLY J F. Solubility of hydrocarbons in water near the critical solution temperatures[J]. Journal of Chemical&Engineering Data,1966, 11(1):13-16.
    [72]郑赞胜.高温高压下有机物与水的互溶度研究[D].杭州:浙江大学, 2003.ZHENG Zansheng. Studies on the mutual solubilities of organicswater under high temperature and high pressure[D]. Hangzhou:Zhejiang University, 2003.
    [73] OLOBUNMI M. OGUNSOLA N B. Removal of heterocyclic S and N from oil precursors by supercritical water[J]. Fuel, 1995, 74(10):1485-1490.
    [74] STALKER L, FARRIMOND P, LARTER S R. Water as an oxygen source for the production of oxygenated compounds(including CO2precursors)during kerogen maturation[J]. Organic Geochemistry, 1994,22(3):474-477.
    [75] CESAR OVALLES A H I R. Upgrading of extra-heavy crude oil by direct use of methane in the presence of water:deuterium-labelled experiments and mechanistic considerations[J]. Fuel, 1995, 74(8):1162-1168.
    [76] LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17):3691-3723.
    [77] OVALLES C, FILGUEIRAS E, MORALES A, et al. Use of a dispersed iron catalyst for upgrading extra-heavy crude oil using methane as source of hydrogen[J]. Fuel, 2003, 82(8):887-892.
    [78] LEIF R N, SIMONEIT B R T. The role of alkenes produced during hydrous pyrolysis of a shale[J]. Organic Geochemistry, 2000, 31(11):1189-1208.
    [79] HOSSEINPOUR M, AHMADI S J, FATEMI S. Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. PartⅠ:Non-catalytic cracking[J]. The Journal of Supercritical Fluids, 2016, 107:278-285.
    [80] WATANABE M, HIRAKOSO H, SAWAMOTO S, et al. Polyethylene conversion in supercritical water[J]. The Journal of Supercritical Fluids, 1998, 13(1):247-252.
    [81] EDERERHJ,KRUSEA,MASC,etal.Modellingofthepyrolysisoftertbutylbenzene in supercritical water[J]. The Journal of Supercritical Fluids, 1999, 15(3):191-204.
    [82]徐涛.超临界水供氢行为研究[D].北京:北京化工大学, 2012.XU Tao. The study on the hydrogen donation capability of supercritical water[D]. Beijing:Beijing University of Chemical Technology, 2012.
    [83] LV G, GAO F, LIU G, et al. The properties of asphaltene at the oilwater interface:a molecular dynamics simulation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 515:34-40.
    [84] YUAN P, CHENG Z, JIANG W, et al. Catalytic desulfurization of residual oil through partial oxidation in supercritical water[J]. The Journal of Supercritical Fluids, 2005, 35(1):70-75.
    [85] BRUNNER E. Fluid mixtures at high pressuresⅨ. Phase separation and critical phenomena in 23(n-alkane+water)mixtures[J]. The Journal of Chemical Thermodynamics, 1990, 22(4):335-353.
    [86] BRUNNER E, THIES M C, SCHNEIDER G M. Fluid mixtures at high pressures:phase behavior and critical phenomena for binary mixtures of water with aromatic hydrocarbons[J]. The Journal of Supercritical Fluids, 2006, 39(2):160-173.
    [87] AMANI M J, GRAY M R, SHAW J M. Phase behavior of Athabasca bitumen+water mixtures at high temperature and pressure[J]. The Journal of Supercritical Fluids, 2013, 77:142-152.
    [88] AMANI M J, GRAY M R, SHAW J M. Volume of mixing and solubility of water in Athabasca bitumen at high temperature and pressure[J].Fluid Phase Equilibria, 2013, 358:203-211.
    [89] WATANABE M, KATO S, ISHIZEKI S, et al. Heavy oil upgrading in the presence of high density water:basic study[J]. The Journal of Supercritical Fluids, 2010, 53(1/2//3):48-52.
    [90] SARRADE S, FéRON D, ROUILLARD F, et al. Overview on corrosion in supercritical fluids[J]. The Journal of Supercritical Fluids, 2017,120:335-344.
    [91] KRITZER P. Corrosion in high-temperature and supercritical water and aqueous solutions a review[J]. The Journal of Supercritical Fluids,2004, 29(1/2):1-29.
    [92] TANG X, WANG S, XU D, et al. Corrosion behavior of Ni-based alloys in supercritical water containing high concentrations of salt and oxygen[J]. Industrial&Engineering Chemistry Research, 2013, 52(51):18241-18250.
    [93] ROMáN-FIGUEROA C, OLIVARES-CARRILLO P, PANEQUE M,et al. High-yield production of biodiesel by non-catalytic supercritical methanol transesterification of crude castor oil(Ricinus communis)[J].Energy, 2016, 107:165-171.
    [94] MOHAMADZADEH SHIRAZI H, KARIMI-SABET J, GHOTBI C.Biodiesel production from spirulina microalgae feedstock using direct transesterification near supercritical methanol condition[J].Bioresource Technology, 2017, 239:378-386.
    [95] ASAHI N, NAKAMURA Y. Chemical shift study of liquid and supercritical methanol[J]. Chemical Physics Letters, 1998, 290(1):63-67.
    [96] TAKEBAYASHI Y, HOTTA H, SHONO A, et al. Noncatalytic orthoselective methylation of phenol in supercritical methanol:the mechanism and acid/base effect[J]. Industrial&Engineering Chemistry Research, 2008, 47(3):704-709.
    [97]常娜,顾兆林,侯雄坡,等.高温煤焦油加氢裂解反应动力学研究[J].煤炭转化, 2010, 33(2):52-56.CHANG Na, GU Zhaolin, HOU Xiongpo, et al. Limping kinetic model of high temperature coal tar hydrocracking[J]. Coal Conversion, 2010,33(2):52-56.
    [98] ARAI K, ADSCHIRI T, WATANABE M. Hydrogenation of hydrocarbons through partial oxidation in supercritical water[J].Industrial&Engineering Chemistry Research, 2000, 39(12):4697-4701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700