用户名: 密码: 验证码:
4,4'-二叠氮二苯乙烯-2,2-二磺酸钠的应用及发展前景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application and developing prospect of 4,4'-diazostilbene-2,2'-disulfonic acid disodium salt
  • 作者:朱佳杰 ; 刘元伟 ; 沈江南 ; 高从堦
  • 英文作者:ZHU Jiajie;LIU Yuanwei;SHEN Jiangnan;GAO Congjie;Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology;Department of Chemical Engineering and Safety, Binzhou University;
  • 关键词:4 ; 4'-二叠氮二苯乙烯-2 ; 2-二磺酸钠 ; 点击化学 ; 光化学 ; 稳定性 ; 离子交换
  • 英文关键词:4,4'-diazostilbene-2,2'disulfonic acid disodium salt;;click chemistry;;photochemistry;;stability;;ion exchange
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:浙江工业大学海洋学院膜分离与水科学技术中心;滨州学院化工与安全学院;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:国家自然科学基金(C126018278);; 浙江省科技厅援青项目(2018C26004)
  • 语种:中文;
  • 页:HGJZ201904024
  • 页数:11
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:215-225
摘要
4,4'-二叠氮二苯乙烯-2,2-二磺酸钠(DAS)是一种带有磺酸基团的芳香类双叠氮化合物。分子中的叠氮基既可在Cu(Ⅰ)催化的点击化学反应体系中与端炔基形成三唑结构,也能在紫外辐射条件下于两端生成高活性氮宾自由基并插入聚合物链段。本文简单介绍了DAS参与的点击化学反应,简述了DAS的光化学交联原理及其相较于其他化学交联剂的优点,重点论述了近些年DAS在光刻、电池隔膜、分子印迹、医用材料、药物缓释和离子交换膜等领域相关的研究应用及发展前景。此外,提出将DAS与石墨烯、金属有机框架材料(MOF)、聚电解质及脂肪族聚合物等结合应用;设计与DAS结构相似的新型叠氮类分子;深入地探究光化学反应机理;实现叠氮基团的选择性插入等是未来研究的重要趋势。
        4,4'-aiazostilbene-2,2'-disulfonic acid disodium salt(DAS) is an aromatic compound with two azido and sulfonic acid groups. When reacting with terminal alkynyl via Cu(Ⅰ)-catalyzed click chemistry reaction, the azido group produces triazole. Under UV irradiation, it also generates highly active nitrene radicals, which can be easily inserted into polymer chains. In this paper, the click chemistry reaction on DAS is briefly introduced. In addition, the photochemical cross-linking mechanism of DAS and its advantages are demonstrated. The recent applications of DAS in different fields of lithography,separators of batteries, molecular imprinting, medical materials, drug release, ion exchange membranes,and etc., are introduced and its developing prospect is made. Furthermore, combining DAS with graphene,metal organic framework material(MOF), polyelectrolyte, aliphatic polymer, and etc., and designing novel azide molecules similar to DAS are suggested to extend its applications. An outlook of exploring the UV reaction mechanism and the insertion of azide groups through controlling the conditions has been proposed.
引文
[1] TORNOE C W, CHRISTENSEN C, MELDAL M. Peptidotriazoles on solid phase:1,2,3-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides[J]. Org. Chem.,2002, 67(9):3057-3064.
    [2] ROSTOVTSEVVV,GREENLG,FOKINVV,etal.Astepwisehuisgen cycloaddition process:copper(Ⅰ)-catalyzed regioselective“ligation”of azides and terminal alkynes[J]. Angew Chem. Int. Ed. Engl., 2002, 41(14):2596-2599.
    [3] WANG L, IKHLEF D, KAHLAL S, et al. Metal-catalyzed azidealkyne“click”reactions:mechanistic overview and recent trends[J].Coordination Chemistry Reviews, 2016, 316:1-20.
    [4]邱素艳,高森,林振宇,等.点击化学最新进展[J].化学进展, 2011,23(4):637-648.QIU S Y, GAO S, LIN Z Y, et al. Advances in click chemistry[J].Progress in Chemistry, 2011, 23(4):637-648.
    [5] TANG J K, WAN L Q, ZHOU Y, et al. Synthesis and performance study of a novel sulfonated polytriazole proton exchange membrane[J].Journal of Solid State Electrochemistry, 2017, 21(3):725-734.
    [6] SWEI J, TALBOT J B. Development of high-definition aqueous polyvinylpyrrolidone photoresists for cathode ray tubes[J]. Journal of Applied Polymer Science, 2006, 102(2):1637-1644.
    [7]江玉波,匡春香,韩春美,等.有机叠氮化合物的合成研究进展[J].有机化学, 2012, 32(12):2231-2238.JIANG Y B, KUANG C X, HAN C M, et al. Advances in the synthesis of organic azides[J]. Chinese Journal of Organic Chemistry, 2012, 32(12):2231-2238.
    [8]李小童,庞思平,于永忠,等. 3,6-二叠氮基-1,2,4,5-四嗪的合成及理论研究[J].化学学报, 2007,65(10):971-976.LI X T, PANG S P, YU Y Z, et al. Synthesis and theoretical studies of3,6-diazido-1,2,4,5-tetrazine[J]. Acta Chimica Sinica, 2007,65(10):971-976.
    [9] HUANG Y J, YE Y S, YEN Y C, et al. Synthesis and characterization of new sulfonated polytriazole proton exchange membrane by click reaction for direct methanol fuel cells(DMFCs)[J]. International Journal of Hydrogen Energy, 2011, 36(23):15333-15343.
    [10] HUANG Y J, YE Y S, SYU Y J, et al. Synthesis and characterization of sulfonated polytriazole-clay proton exchange membrane by in situ polymerization and click reaction for direct methanol fuel cells[J].Journal of Power Sources, 2012, 208:144-152.
    [11] SINGH A, MUKHERJEE R, BANERJEE S, et al. Sulfonated polytriazoles from a new fluorinated diazide monomer and investigation of their proton exchange properties[J]. Journal of Membrane Science,2014, 469:225-237.
    [12] SINGH A, BANERJEE S, KOMBER H, et al. Synthesis and characterization of highly fluorinated sulfonated polytriazoles for proton exchange membrane application[J]. RSC Advances, 2016, 6(16):13478-13489.
    [13] SINGH A, BISOI S, BANERJEE S, et al. Hydroquinone based sulfonated copolytriazoles with enhanced proton conductivity[J].Macromolecular Materials and Engineering, 2017, 302(11):1700208.
    [14] SAHA S, BANERJEE S, KOMBER H, et al. Flexible diazide based sulfonated polytriazoles and their proton exchange membrane properties[J]. Macromolecular Chemistry and Physics, 2017, 218(14):1700070.
    [15] SAHA S, MUKHERJEE R, SINGH A, et al. Synthesis, characterization and investigation of proton exchange properties of sulfonated polytriazoles from a new semifluorinated diazide[J] Monomer Polymer Engineering and Science, 2017, 57(3):312-323.
    [16] KANG N R, LEE S Y, SHIN D W, et al. Effect of end-group crosslinking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes[J]. Journal of Power Sources,2016, 307:834-843.
    [17] SCHALKHAMMER T, LOBMAIER C, PITTNER F, et al. Metal island coated polymer sensor for direct determination of the volume effect of chaotropic agents[J]. Mikrochimica Acta, 1995, 121(1/2/3/4):259-268.
    [18] BROMBERG L. Zein-poly(N-isopropylacrylamide)conjugates[J].Journal of Physical Chemistry B, 1997, 101(4):504-507.
    [19] BARANAC-STOJANOVIC M, STOJANOVIC M, ALEKSIC J.Theoretical study of azido gauche effect and its origin[J]. New Journal of Chemistry, 2017, 41(11):4644-4661.
    [20] TAKAHASHI K, ISHII R, NAKAMURA T, et al. Flexible electronic substrate film fabricated using natural clay and wood components with cross-linking polymer[J]. Advanced Materials, 2017, 29(17):1606512.
    [21] LU Q W, HE, Y B, YU Q P. et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, 29(13):1604460.
    [22] LU Y H, YANG Y, ZHANG T F, et al. Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis[J]. ACS Nano, 2016, 10(11):10507-10515.
    [23] BISWAS S, ARIEF I, PANJA S S, et al. Absorption-dominated electromagnetic wave suppressor derived from ferrite-doped crosslinked graphene framework and conducting carbon[J]. ACS Applied Materials&Interfaces, 2017, 9(3):3030-3039.
    [24] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426-430.
    [25] LIU M Y, ZENG G J, WANG K, et al. Recent developments in polydopamine:an emerging soft matter for surface modification and biomedical applications[J]. Nanoscale, 2016, 8(38):16819-16840.
    [26] MILLER D J, DREYER D R, BIELAWSKI C W, et al. Surface modification of water purification membranes[J]. Angew. Chem. Int.Ed. Engl., 2017, 56(17):4662-4711.
    [27] SHI W J, CAO L Y, ZHANG H, et al. Surface modification of twodimensional metal-organic layers creates biomimetic catalytic microenvironments for selective oxidation[J]. Angew. Chem. Int. Ed.Engl., 2017, 56(33):9704-9709.
    [28] ZHI J H, ZHANG L Z, YANG Y Y, et al. Mechanical durability of superhydrophobic surfaces:the role of surface modification technologies[J]. Applied Surface Science, 2017, 392:286-296.
    [29] QIAN Y N, LI L H, SONG Y, et al. Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction[J]. Biomaterials, 2018, 164:22-37.
    [30] FU J H, JI J, YUAN W Y, et al. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan[J]. Biomaterials, 2005, 26(33):6684-6692.
    [31] ZHANG X, CHEN H, ZHANG H. Layer-by-layer assembly:from conventional to unconventional methods[J]. Chemical Communications,2007, 14(14):1395-1405.
    [32] STUPP S I, PALMER L C. Supramolecular chemistry and selfassembly in organic materials design[J]. Chemistry of Materials, 2014,26(1):507-518.
    [33] ZHANG F, JIA Z, SRINIVASAN M P. Application of direct covalent molecular assembly in the fabrication of polyimide ultrathin films[J].Langmuir, 2005, 21(8):3389-3395.
    [34] TONG W J, GAO C Y, MOHWALD H. Single polyelectrolyte microcapsules fabricated by glutaraldehyde-mediated covalent layerby-layer assembly[J]. Macromolecular Rapid Communications, 2006,27(24):2078-2083.
    [35] SUCH G K, QUINN J F, QUINN A, et al. Assembly of ultrathin polymer multilayer films by click chemistry[J]. Journal of the American Chemical Society, 2006, 128(29):9318-9319.
    [36] WU G L, SHI F, WANG Z Q, et al. Poly(acrylic acid)-bearing photoreactive azido groups for stabilizing multilayer films[J]. Langmuir,2009, 25(5):2949-2955.
    [37] WU J J, ZHANG L, WANG Y X, et al. Mussel-inspired chemistry for robust and surface-modifiable multilayer films[J]. Langmuir, 2011, 27(22):13684-13691.
    [38] NIU J, SHI F, LIU Z, et al. Reversible disulfide cross-linking in layerby-layer films:preassembly enhanced loading and pH/reductant dually controllable release[J]. Langmuir, 2007, 23(11):6377-6384.
    [39] LI Q, QUINN J F, CARUSO F. Nanoporous polymer thin films via polyelectrolyte templating[J]. Advanced Materials, 2005, 17(17):2058-2062.
    [40] REN K F, JI J, SHEN J C. Tunable DNA release from cross-linked ultrathin DNA/PLL multilayered films[J]. Bioconjugate Chemistry,2006, 17(1):77-83.
    [41] DRAGAN E S, BUCATARIU F. Cross-linked multilayers of poly(vinyl amine)as a single component and their interaction with proteins[J].Macromolecular Rapid Communications, 2010, 31(3):317-322.
    [42] YU Y, ZHANG H, ZHANG C H, et al. Facile fabrication of robust multilayer films:visible light-triggered chemical cross-linking by the catalysis of a ruthenium(Ⅱ)complex[J]. Chemical Communications,2011, 47(3):929-931.
    [43] PALOMAKI P K B, DINOLFO P H. A versatile molecular layer-bylayer thin film fabrication technique utilizing copper(Ⅰ)-catalyzed azide alkyne cycloaddition[J]. Langmuir, 2010, 26(12):9677-9685.
    [44] PALOMAKI P K B, KRAWICZ A, DINOLFO P H. Thickness,surface morphology, and optical properties of porphyrin multilayer thin films assembled on Si(100)using copper(Ⅰ)-catalyzed azidealkyne cycloaddition[J]. Langmuir, 2011, 27(8):4613-4622.
    [45] PALOMAKI P K, DINOLFO P H. Structural analysis of porphyrin multilayer films on ITO assembled using copper(Ⅰ)-catalyzed azidealkyne cycloaddition by ATR IR[J]. ACS Applied Materials&Interfaces, 2011, 3(12):4703.
    [46]王恩明,邱丽,杜海燕,等.点击化学法制备SBS-TMA型阴离子交换膜及其性能[J].化工进展, 2018, 37(1):230-235.WANG E M, QIU L, DU H Y, et al. Preparation of anion-exchange membranes of SBS-TMA type by click chemistry method and their performance[J]. Chemical Industry and Engineering Progress, 2018, 37(1):230-235.
    [47] LI Z, LI Y, QIAN X F, et al. A simple method for selective immobilization of silver nanoparticles[J]. Applied Surface Science,2005, 250(1/2/3/4):109-116.
    [48] LU J, NGUYEN Q, ZHOU J Q, et al. Poly(vinyl alcohol)/poly(vinyl pyrrolidone)interpenetrating polymer network:synthesis and pervaporation properties[J]. Journal of Applied Polymer Science, 2003,89(10):2808-2814.
    [49] LU J, NGUYEN Q, ZHOU L Z, et al. Study of the role of water in the transport of water and THF through hydrophilic membranes by pervaporation[J].JournalofMembraneScience,2003,226(1/2):135-143.
    [50] XU X L, CHENG X F, XIAO T H. et al. Study of the separation of methanol/methylacetatemixturesbypervaporationwithPVA/PVPblend membranes[J]. Membrane Science&Technology, 2010, 30(6):20-25.
    [51] XIAO T H, XU X L, QIN H J, et al. Zeolite 4A-incorporated polymeric membranes for pervaporation separation of methanol-methyl acetate mixtures[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21(4):816-822.
    [52] LIT,ZHONGGM,FURQ,etal.Synthesisandcharacterizationofnafion/cross-linkedPVPsemi-interpenetratingpolymernetworkmembrane for direct methanol fuel cell[J]. Journal of Membrane Science, 2010, 354(1-2):189-197.
    [53] ZENG L, ZHAO T S, WEI L, et al. Polyvinylpyrrolidone-based semiinterpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries[J]. Journal of Power Sources, 2016, 327:374-383.
    [54] ZHAO J H, YUAN W Z, XU A H, et al. Perfluorinated sulfonic acid ionomer/poly(N-vinylpyrrolidone)nanofibermembranes:electrospinning fabrication, water stability, and metal ion removal applications[J].Reactive&Functional Polymers, 2011, 71(11):1102-1109.
    [55] ZHANG X S, JIANG C, CHENG M J, et al. Facile method for the fabrication of robust polyelectrolyte multilayers by post-photo-crosslinking of azido groups[J]. Langmuir, 2012, 28(18):7096-7100.
    [56] LIU X L, ZHAO K, JIANG C, et al. Introducing a high gravity field to enhance infiltration of small molecules into polyelectrolyte multilayers[J]. Soft Matter, 2015, 11(28):5748-5753.
    [57] AN Q, ZHOU Y, ZHANG Y J, et al. A facile method for the fabrication of covalently linked PAH/PSS layer-by-layer films[J]. RSC Advances,2014, 4(11):5683-5688.
    [58] JI F Q, ZHANG Y W, GENG Y L, et al. Fabrication of covalently linked PAH/PVS layer-by-layer assembled multilayers via a postphotochemical cross-linking strategy[J]. Chemical Research in Chinese Universities, 2016, 32(3):493-498.
    [59] DU H, ZHANG, Y J, LV S S. Combined“post-infiltration, subsequent photochemical cross-linking” and “cross-linking and selective etching”strategies to fabricate nanoporous layer-by-layer assembled multilayers[J]. Colloid and Polymer Science, 2017, 295(2):317-325.
    [60] ZHOU Y, CHENG M J, ZHU X Q, et al. A facile method to prepare molecularly imprinted layer-by-layer nanostructured multilayers using postinfiltration and a subsequent photo-cross-linking strategy[J]. ACS Applied Materials&Interfaces, 2013, 5(17):8308-8313.
    [61] LIU Y X, CAO B, JIA P, et al. Layer-by-layer surface molecular imprinting on polyacrylonitrile nanofiber mats[J]. Journal of Physical Chemistry A, 2015, 119(25):6661-6667.
    [62] JI F Q, YOU L N, WANG L, et al. Layer-by-layer assembled chitosan-based antibacterial films with improved stability under alkaline conditions[J]. Industrial&Engineering Chemistry Research,2016, 55(40):10664-10670.
    [63] WANG Y, YOU W J, SONG Y F, et al. Using a biocompatible diazidecrosslinker to fabricate a robust polyelectrolyte multilayer film with enhanced effects on cell proliferation[J]. Journal of Materials Chemistry B, 2017, 5(2):375-381.
    [64] NIE K, AN Q, ZHANG Y H. A functional protein retention and release multilayer with high stability[J]. Nanoscale, 2016, 8(16):8791-8797.
    [65] LI Y L, AN Q, HU Y M, et al. A facile method for the construction of covalently cross-linked layered double hydroxides layer-by-layer films:enhanced stability and delayed release of guests[J]. Chemical Physics Letters, 2015, 631:118-123.
    [66] LV F Z, XU L N, ZHANG Y H, et al. Layered double hydroxide assemblies with controllable drug loading capacity and release behavior as well as stabilized layer-by-layer polymer multilayers[J].ACS Applied Materials&Interfaces, 2015, 7(34):19104-19111.
    [67] XU L, LV F, ZHANG Y, et al. Interfacial modification of magnetic montmorillonite(MMT)using covalently assembled LbL multilayers[J].Journal of Physical Chemistry C, 2012, 118(35):20357-20362.
    [68] WANG Y, AN Q, ZHOU Y, et al. Post-infiltration and subsequent photo-crosslinking strategy for layer-by-layer fabrication of stable dendrimers enabling repeated loading and release of hydrophobic molecules[J]. Journal of Materials Chemistry B, 2015, 3(4):562-569.
    [69] AN Q, NIE K, ZHANG Y H, et al. PAH/DAS covalently cross-linked layer-by-layer multilayers:a"nano-net''superstratum immobilizes nanoparticles and remains permeable to small molecules[J]. Soft Matter, 2015, 11(34):6859-6865.
    [70] LUAN X L, HUANG T, ZHOU Y, et al. Controlled interfacial permeation, nanostructure formation, catalytic efficiency, signal enhancement capability, and cell spreading by adjusting photochemical cross-linking degrees of layer-by-layer films[J]. ACS Applied Materials&Interfaces, 2016, 8(49):34080-34088.
    [71] LIU H M, RUAN H M, ZHAO Y, et al. A facile avenue to modify polyelectrolyte multilayers on anion exchange membranes to enhance monovalent selectivity and durability simultaneously[J]. Journal of Membrane Science, 2017, 543:310-318.
    [72] LIU H M, JIANG Y L, DING J C, et al. Surface layer modification of AEMs by infiltration and photo-cross-linking to induce monovalent selectivity[J]. AIChE J., 2018, 64(3):993-1000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700