用户名: 密码: 验证码:
油茶果壳对Al~(3+)和Ca~(2+)的吸附性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption properties of Camellia oleifera fruit shell to Al~(3+) and Ca~(2+) from solution
  • 作者:许彦明 ; 陈隆升 ; 张震 ; 陈永忠 ; 彭邵锋
  • 英文作者:XU Yanming;CHEN Longsheng;ZHANG Zhen;CHEN Yongzhong;PENG Shaofeng;Hunan Academy of Forestry;National Engineering Research Center for Oil-tea Camellia;
  • 关键词:油茶果壳 ; Al3+ ; Ca2+ ; 吸附性能 ; 吸附材料
  • 英文关键词:Camellia oleifera fruit shell;;Al3+;;Ca2+;;adsorption properties;;adsorbent material
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:湖南省林业科学院;国家油茶工程技术研究中心;
  • 出版日期:2019-01-21 11:46
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:v.39;No.212
  • 基金:湖南省自然科学基金项目“油茶果壳基材料对林地土壤磷素活化效应研究”(2016JJ4050);; 湖南省林业科技计划项目(XLK201607)
  • 语种:中文;
  • 页:ZNLB201902007
  • 页数:6
  • CN:02
  • ISSN:43-1470/S
  • 分类号:46-51
摘要
探讨油茶果壳对Al~(3+)和Ca~(2+)的吸附性能,为果壳的资源化利用及林地施肥提供理论依据。利用果壳吸附溶液中的Al~(3+)和Ca~(2+),通过红外光谱分析和模型拟合,对其吸附特性进行了初步探讨。结果表明:1)果壳结构中含有大量的羧基和羟基等官能团,这些官能团能够提供与Al~(3+)和Ca~(2+)进行离子交换的H+;2)果壳对Al~(3+)和Ca~(2+)的吸附符合Freundlich模型,对Al~(3+)和Ca~(2+)的理论最大吸附量分别为11.39、11.04 mg/g;3)吸附过程符合准二级动力学模型,对Al~(3+)和Ca~(2+)的吸附过程主要受化学作用的控制,膜扩散和颗粒内扩散共同决定果壳吸附Al~(3+)和Ca~(2+)的速率;4)Al~(3+)和Ca~(2+)共存情况下,果壳对Al~(3+)的吸附高于Ca~(2+),且果壳对混合溶液中Al~(3+)和Ca~(2+)的吸附比单一溶液中的减少,二者之间存在竞争;5)油茶果壳是一种对Al~(3+)和Ca~(2+)有较好吸附性能的廉价吸附材料。
        In order to promote Camellia oleifera fruit shell utilization, the metal ions adsorption ability of the shells was investigated.By using the shells to adsorb Al~(3+) and Ca~(2+) in solution, through methods of infrared spectrum analysis and model fitting, the adsorption characteristics of C. oleifera fruit shell were discussed. The results show that 1) In the shell structure there are a large number of carboxyl and hydroxyl groups, which can provide H+ for ion exchange with Al~(3+) and Ca~(2+); 2) The adsorption of the shells to Al~(3+) and Ca~(2+) accorded with Freundlich model, and the theoretical maximum adsorption capacity of Al~(3+) and Ca~(2+) were 11.39 and 11.04 mg/g, respectively; 3)The adsorption process conformed to the quasi two level kinetic model, the adsorption process of Al~(3+) and Ca~(2+) was mainly controlled by the chemical action, and the membrane diffusion and particle internal diffusion together determined the rate of Al~(3+) and Ca~(2+) adsorbed by the shell; 4) Under the coexistence of Al~(3+) and Ca~(2+), the adsorption of the shell to Al~(3+) was higher than to Ca~(2+), and the adsorption of Al~(3+)and Ca~(2+) in the mixed solution was less than that of single solution, and there was a competition between Al~(3+) and Ca~(2+); 5) The shell of C.oleifera is a cheap adsorptive material which has good properties for adsorbing Al~(3+) and Ca~(2+).
引文
[1]林芳芳,易筱筠,党志,等.改性花生壳对水中Cd2+和Pb2+的吸附研究[J].农业环境科学学报,2011,30(7):1404-1408.
    [2]张汝壮,周彦波,顾晓晨,等.柠檬酸改性大豆秸秆材料对铜离子的吸附性能[J].科技导报,2014,32(14):15-18.
    [3]吴树人,叶礼萍,吴承佩,等.改性油茶果壳去除溶液中重金属离子的研究[J].自然杂志,1981(7):556.
    [4]吴亚男,黄显怀.板栗壳对Cr6+等重金属吸附性能研究[J].安徽建筑工业学院学报(自然科学版),2012,20(06):76-78.
    [5]谭光群,袁红雁,刘勇,等.麦秆对重金属Pb2+和Cr3+吸附性能的研究[J].化学研究与应用,2011,23(7):840-846.
    [6]丁少净,钟秋平,袁婷婷,等.不同土壤水分管理措施对油茶生长的影响[J].经济林研究,2017,35(2):24-31.
    [7]罗佳,陈永忠,周小玲,等.油茶林果实成熟期养分分配特征[J].经济林研究,2017,35(3):102-108.
    [8]覃佐东,谢吉勇,黄生辉,等.油茶壳综合利用研究进展[J].生物加工过程,2016,14(5):74-78.
    [9]廖永丽,陈景斯,郭华敏,等.不同产地油茶果壳多糖含量的研究[J].广东药科大学学报,2017,33(5):620-623.
    [10]彭开元,胡进波,陈桂华,等.油茶果壳化学成分与燃烧性能分析[J].中南林业科技大学学报,2016,36(7):123-128.
    [11]王玲琼,徐巧林,董丽梅,等.油茶果壳化学成分研究[J].热带亚热带植物学报,2017,25(1):81-86.
    [12]宋冬阳,郭会琴,颜流水.油茶果壳对水溶液中结晶紫的吸附性能[J].环境工程学报,2014,8(12):5129-5134.
    [13]苏鹃,伍钧,杨刚,等.改性白果壳对水溶液中重金属镉的吸附研究[J].农业环境科学学报,2014,33(6):1218-1225.
    [14]姜玉,庞浩,廖兵.甘蔗渣吸附剂的制备及其对Pb2+、Cu2+、Cr3+的吸附动力学研究[J].中山大学学报(自然科学版),2008,47(6):32-37.
    [15]翁诗甫.傅里叶变换红外光谱分析[M].2版.北京:化学工业出版社,2010.3
    [16]刘益贵,周理程,彭克俭,等.改性龙须眼子菜吸附水溶液中Cu2+的性能[J].环境科学学报,2009,29(8):1649-1656.
    [17]丁洋,靖德兵,周连碧,等.板栗内皮对水溶液中镉的吸附研究[J].环境科学学报,2011,31(9):1933-1941.
    [18]郝蓉,彭少麟,宋艳暾,等.不同温度对黑碳表面官能团的影响[J].生态环境学报,2010,19(3):528-531.
    [19]刘恒博.小麦秸秆生物吸附剂的制备及其对镉离子吸附的研究[D].杨凌:西北农林科技大学,2013.
    [20]常春,刘天琪,廉菲,等.不同热解条件下制备的秸秆炭对铜离子的吸附动力学[J].环境化学,2016,35(5):1042-1049.
    [21]MATA Y N,BLáZQUEZ M L,BALLESTER A,et al.Biosorption of cadmium,lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus.[J].Journal of Hazardous Materials,2009,163(2):555-562.
    [22]姜玉,庞浩,廖兵.甘蔗渣吸附剂的制备及其对Pb2+、Cu2+、Cr3+的吸附动力学研究[J].中山大学学报(自然科学版),2008,47(6):32-37.
    [23]刘秉涛,娄渊知,姜安玺.壳聚糖对水中铝离子的吸附性能[J].化学研究,2006,17(3):46-48.
    [24]曹志伟,王欣,张加明,等.利用沙柳制备活性炭纤维吸附材料的研究[J].内蒙古农业大学学报(自然科学版),2017(1):82-88.
    [25]DAVIS T A,VOLESKY B,MUCCI A.A review of the biochemistry of heavy metal biosorption by brown algae[J].Water Research,2003,37(18):4311-4330.
    [26]WITEK-KROWIAK A,HARIKISHORE K R D.Removal of microelemental Cr(III)and Cu(II)by using soybean meal waste-unusual isotherms and insights of binding mechanism.[J].Bioresource Technology,2013,127(127C):350-357.
    [27]张宏,蒋菊,刘燕梅,等.油菜秸秆髓芯对水中铜离子吸附作用及其机理[J].环境工程学报,2015,9(12):5865-5873.
    [28]HO Y S,MCKAY G.The kinetics of sorption of divalent metal ions onto sphagnum moss peat.[J].Water Research,2000,34(3):735-742.
    [29]LODEIRO P,BARRIADA J L,HERRERO R,et al.The marine macroalga Cystoseira baccata as biosorbent for cadmium(II)and lead(II)removal:kinetic and equilibrium studies[J].Environmental Pollution,2006,142(2):264-273.
    [30]陈灿,王建龙.重金属离子的生物吸附容量与离子性质之间的关系[J].环境科学,2007,28(8):1732-1737.
    [31]谭光群,袁红雁,刘勇,等.麦秆对重金属Pb2+和Cr3+吸附性能的研究[J].化学研究与应用,2011,23(7):840-846.
    [32]陈隆升,王瑞,陈永忠,等.油茶果壳改良材料对红壤有效磷的影响研究[J].江西农业大学学报,2017,39(6):1170-1177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700