用户名: 密码: 验证码:
梯度纳米结构IF钢的协同强化本构模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Constitutive model characterizing synergistic hardening effect of gradient nanostructured IF steel
  • 作者:王效贵 ; 胡家诚 ; 赵伟奇 ; 许杨剑
  • 英文作者:WANG Xiaogui;HU Jiacheng;ZHAO Weiqi;XU Yangjian;College of Mechanical Engineering, Zhejiang University of Technology;
  • 关键词:梯度纳米结构IF钢 ; 协同强化效应 ; 本构模型 ; 显微硬度 ; 多轴应力状态
  • 英文关键词:gradient nanostructured IF steel;;synergistic hardening effect;;constitutive model;;microhardness;;multi-axial stress state
  • 中文刊名:ZJGD
  • 英文刊名:Journal of Zhejiang University of Technology
  • 机构:浙江工业大学机械工程学院;
  • 出版日期:2019-03-20
  • 出版单位:浙江工业大学学报
  • 年:2019
  • 期:v.47;No.198
  • 基金:国家自然科学基金资助项目(51175469)
  • 语种:中文;
  • 页:ZJGD201902007
  • 页数:7
  • CN:02
  • ISSN:33-1193/T
  • 分类号:37-43
摘要
提出了一种基于显微硬度建立梯度纳米结构IF钢的本构模型的新方法,并通过单轴拉伸过程的有限元模拟研究了应力状态演化。首先将梯度纳米结构层划分为12个等厚度薄层,假设各薄层与芯部粗晶的力学性能可用Hollomon硬化准则和GTN损伤模型表征,通过基于实验的反演算法识别出模型中的材料参数,从而建立了表征梯度纳米结构IF钢的协同强化效应和损伤演化的本构模型。通过模拟梯度纳米结构IF钢的单向拉伸过程,获得了材料在拉伸过程中依次经历的3种应力状态,即纯弹性变形时的单轴拉伸应力状态、表层受压芯部受拉的多轴应力状态和表层受拉芯部受压的多轴应力状态。基于有限元模拟得到的轴向应力—轴向应变曲线,准确预测了不同梯度层占比时的临界失稳应变。
        The constitutive model of gradient nanostructured IF steel based on microhardness is developed in this work. The gradient nanostructure layer is divided into 12 pieces of thin layer. The mechanical properties of each thin layer and the coarse grain core are assumed to be characterized by the Hollomon hardening criterion and the GTN damage model. The material parameters of the constitutive model are identified by the inverse analysis based on the experimental data. The developed constitutive model is able to characterize the synergistic strengthening effect and damage evolution of gradient nanostructured IF steel. The constitutive model is used to analyze the evolution of multi-axial stress state under uniaxial tension. The finite element results indicate three successive stress states: the uniaxial tensile stress state, the multi-axial stress state with compressive surface and tensile core, and the multi-axial stress state with tensile surface and compressive core. In addition, the critical instability strains of the gradient nanostructured IF steel plates with different thickness ratios of gradient nanostructured layer are predicted based on the axial stress-axial strain curve obtained by finite element simulation.
引文
[1] 柴国钟,曹彬彬,张征,等.多级微结构表面润湿性的尺度效应分析[J].浙江工业大学学报,2018,46(1):7-10.
    [2] 黄赵洁,张宏华,邸文瑞,等.铁氮共掺纳米TiO2粉末催化剂的制备及其光催化性能研究[J].浙江工业大学学报,2014,42(2):167-171.
    [3] LU K, LU J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of materials science & technology, 1999, 15: 193.
    [4] 卢柯.梯度纳米结构材料[J].金属学报,2015,51(1):1-10.
    [5] LIU G, WANG S C, LOU X F, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening[J]. Scripta materialia, 2001, 44: 1791.
    [6] ROALND T, RETRAINT D, LU K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J]. Scripta materialia, 2006, 54: 1949.
    [7] 赵佳群,李刘合,景凯.梯度过渡层对硬质合金沉积类金刚石膜的耐磨性影响[J].表面技术,2017,46(1):82-87.
    [8] WEI Y J, LI Y Q, ZHU L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J]. Nature communications, 2014, 5(4): 3580.
    [9] PETIT J, WALTZ L, MONTAY G, et al. multilayer modelling of stainless steel with nanocrystallised superficial layer [J]. Materials science & engineering A, 2012, 536(3): 124-128.
    [10] WU X L, JIANG P, CHEN L, et al. Synergetic strengthening by gradient structure[J]. Materials research letters, 2014, 2(4): 185-191.
    [11] LI J, SOH A K. Modeling of the plastic deformation of nano- structured materials with grain size gradient[J]. International journal of plasticity, 2012, 39(4): 88-102.
    [12] WU X L, JIANG P, CHEN L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the national academy of sciences, 2014, 111(20): 7197-7201.
    [13] TIRYAKIOGLU M. On the relationship between vickers hardness and yield stress in Al–Zn–Mg–Cu alloys[J]. Materials science & engineering A, 2015, 633: 17-19.
    [14] BUSBY J T, HASH M C, WAS G S. The relationship between hardness and yield stress in irradiated austenitic and ferritic steels[J]. Journal of nuclear materials, 2005, 336(2): 267-278.
    [15] 马瑞珍.GTN模型参数敏感性分析及其在钢节点性能研究中的应用[D].北京:北京交通大学,2016.
    [16] 王效贵,李晓叶.GTN损伤模型的算法研究及试验验证[J].浙江工业大学学报,2015,43(6):660-665.
    [17] KERYVIN V, HOANG V H, SHEN J. Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation[J]. Intermetallics, 2009, 17(4): 211-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700