用户名: 密码: 验证码:
长江流域水系分形结构特征及发育阶段划分
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on fractal structural features of Yangtze River water system and development stage division
  • 作者:孟宪萌 ; 张鹏举 ; 冷傲 ; 周波 ; 刘登峰
  • 英文作者:MENG Xianmeng;ZHANG Pengju;LENG Ao;ZHOU Bo;LIU Dengfeng;School of Environmental Studies,China University of Geosciences;Bureau of Hydrology,Changjiang Water Resources Commission;School of Water Resources and Hydropower,Xi'an University of Technology;
  • 关键词:地貌发育阶段 ; 分形理论 ; 水系分维数 ; 长江流域
  • 英文关键词:geomorphologic development stage;;fractal theory;;fractal dimension of river system;;Yangtze River basin
  • 中文刊名:RIVE
  • 英文刊名:Yangtze River
  • 机构:中国地质大学(武汉)环境学院;长江水利委员会水文局;西安理工大学水利水电学院;
  • 出版日期:2019-03-28
  • 出版单位:人民长江
  • 年:2019
  • 期:v.50;No.652
  • 基金:国家自然科学基金资助项目(51109192);; 中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目(CUG 160205);; 海印创新奖学金资助项目(1201710740);; 中国地质调查局项目(DD20190327)
  • 语种:中文;
  • 页:RIVE201903017
  • 页数:7
  • CN:03
  • ISSN:42-1202/TV
  • 分类号:98-104
摘要
基于分形理论对长江流域不同地貌类型区分别进行了水系分维数的计算,论证长江流域不同类型地貌区域水系存在显著的分形特征,同时通过水系分维数,定量地判断了长江流域不同地貌单元的地貌发育阶段。研究结果表明:①长江流域水系分维数的变化呈现出自西向东逐渐增大的三阶梯分布趋势。②河网密度作为判别水系疏密程度的指标,在整个研究区与水系分维数之间呈现出一定的正相关关系。③除南阳盆地岗地平原外,长江流域其余地貌区仍然处于地貌侵蚀发育的幼年阶段,但不同地貌区之间的发育程度仍然存在较大差异。④在长江中下游低山丘陵平原区,受城市化进程中人类活动的影响,水系复杂程度及流域侵蚀发育程度皆表现出较大的差异性。
        Based on fractal theory, the fractal dimensions of different geomorphological regions in the Yangtze River basin are calculated, and it is found that there are significant fractal characteristics of river systems in different geomorphological regions of the Yangtze River basin. Through water system fractal dimensions, the geomorphological development stages of different geomorphological units are quantitatively determined. The results show that: ①the fractal dimension of river system in the Yangtze River basin shows an increasing trend from west to east with three-step distribution. ②the density of river network, an index to judge the degree of drainage system density, is positively correlated with the fractal dimension of river network. ③the development stages of different geomorphological regions in all of the Yangtze River basin are at the age of infancy, except the Nanyang basin, but there are still significant differences in development degree among different geomorphological regions. ④ the river system complexity and the degree of erosion development are significantly diversified in the low-middle mountains and plains of the middle and lower Yangtze River because of urbanization and human activities.
引文
[1] 程维明,周成虎,申元村,等.中国近40 a来地貌学研究的回顾与展望[J].地理学报,2017,72(5):755-775.
    [2] 金德生.长江流域地貌系统演化趋势与流域开发[J].长江流域资源与环境,1993,2(1):1-8.
    [3] 陈喜昌,蔡彬.长江流域地貌特征及其环境地质意义[J].中国地质,1987,204(5):13-16.
    [4] 刘会平.长江流域地貌类型研究[J].华中师范大学学报:自然科学版,1994,28(1):129-132.
    [5] 刘会平.长江流域地貌区划新方案[J].华中师范大学学报:自然科学版,1996,30(3):345-352.
    [6] Bugnicourt P,Guitet S,Santos V F,et al.Using textural analysis for regional landform and landscape mapping,Eastern Guiana Shield[J].Geomorphology,2018(317):23-44.
    [7] 黄宝华,郭福生,姜勇彪,等.广丰盆地丹霞地貌遥感影像特征[J].山地学报,2010,28(4):500-504.
    [8] Boulton S J,Stokes M.Which DEM is best for analyzing fluvial landscape development in mountainous terrains[J].Geomorphology,2018,310:168-187.
    [9] Cui L,Zhao Y,Liu J,et al.Landscape ecological risk assessment in Qinling Mountain[J].Geological Journal,2018,53(1):342-351.
    [10] 陈有明,杨则东,黄洁,等.长江流域地貌类型与地貌过程遥感诠释[J].国土资源遥感, 2010(S1): 98-107.
    [11] 陈有明,杨娟,疏浅,等.长江流域地貌、水患防治及土地潜力遥感研究[J].合肥工业大学学报:自然科学版,2014,37(6):736-744.
    [12] 文伏波.长江流域地图集[M].北京:中国地图出版社,1999.
    [13] 汪富泉,曹叔尤,丁晶.河流网络的分形与自组织及其物理机制[J].水科学进展,2002,13(3):368-376.
    [14] 李后强,艾南山.分形地貌学及地貌发育的分形模型[J].自然杂志,1992,15(7):516-519.
    [15] Donadio C,Magdaleno F,Mazzarella A. Fractal dimension of the hydrographic pattern of three large rivers in the Mediterranean Morphoclimatic System:Geomorphologic Interpretation of Russian (USA),Ebro (Spain) and Volturno (Italy) Fluvial Geometry[J].Pure and Applied Geophysics,2015,172(7):1975-1984.
    [16] 吕爱锋,陈嘻,王纲胜.基于DEM的流域水系分维估算方法探讨[J].干旱区地理,2002,25(4):315-320.
    [17] Rosso R,Bacchi B,Barbera P L.Fractal relation of mainstream length to catchment area in river networks[J].Water Resources Research,1991,27(3):381-387.
    [18] 王林,陈兴伟.基于DEM的流域水系分维计算与结果分析[J].地球信息科学学报,2007,9(4):133-134.
    [19] 张宏才,汤国安.基于GIS的河网分形研究[J].西北大学学报:自然科学版,2006,36(4):659-662.
    [20] Fac-Beneda J.Fractal structure of the Kashubian hydrographic system[J].Journal of Hydrology,2013(488):48-54.
    [21] 艾南山.侵蚀流域系统的信息熵[J].水土保持学报,1987,1(2):1-8.
    [22] 何隆华,赵宏.水系的分形维数及其含义[J].地理科学,1996,16(2):124-128.
    [23] Zhou M,Tian F,Hu H.Uncertainty of box-counting method for estimating the fractal dimension of river networks[C]//Proc of Chinese PUB International Symposium.Beijing,2006.
    [24] 朱晓华,蔡运龙.中国水系的盒维数及其关系[J].水科学进展,2003,14(6):731-735.
    [25] 何钢,蔡运龙.不同比例尺下中国水系分维数关系研究[J].地理科学,2006,26(4):461-465.
    [26] 韩龙飞,许有鹏,杨柳,等.近50 a长三角地区水系时空变化及其驱动机制[J].地理学报,2015,70(5):819-827.
    [27] 于丹丹,杨波,李景保,等.近61 a来长江荆南三口水系结构演变特征及其驱动因素分析[J].水资源与水工程学报,2017,28(4):13-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700