用户名: 密码: 验证码:
超音速激光沉积技术:研究现状及发展趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research States and Development Tendency of Supersonic Laser Deposition Technology
  • 作者:姚建华 ; 吴丽娟 ; 李波 ; 张群莉
  • 英文作者:Yao Jianhua;Wu Lijuan;Li Bo;Zhang Qunli;Institute of Laser Advanced Manufacturing, Zhejiang University of Technology;Collaborative Innovation Center of High-End Laser Manufacturing Equipment;
  • 关键词:激光技术 ; 超音速激光沉积 ; 沉积原理 ; 相成分 ; 微观组织 ; 性能表征
  • 英文关键词:laser technology;;supersonic laser deposition(SLD);;deposition mechanism;;phase composition;;microstructure;;property characterization
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:浙江工业大学激光先进制造研究院;浙江省高端激光制造装备协同创新中心;
  • 出版日期:2018-12-07 14:05
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:国家重点研发计划(2017YFB1103601);; NSFC-浙江两化融合联合基金(U1509201);; 国家自然科学基金(51701182);; 浙江省自然科学基金(LQ17E050009);; 高等学校学科创新引智计划(110000213920168001)
  • 语种:中文;
  • 页:JJZZ201903001
  • 页数:11
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:9-19
摘要
超音速激光沉积(SLD)是新近发展起来的一种激光复合制造技术,该技术将激光辐照与冷喷涂相结合,利用高能激光束的热能与高速粒子动能的协同作用,实现了宽范围材料的沉积,并获得了特殊的微观组织和性能。结合本课题组在SLD领域的研究成果,从SLD原理、沉积材料范围、微观组织结构以及性能表征等方面综述了国内外的最新研究进展,从工艺探索、设备开发以及性能评估等方面对SLD技术未来的发展趋势和挑战进行了展望。
        Supersonic laser deposition(SLD) is a newly developed laser hybrid manufacturing technology, which combines the advantages of laser irradiation and cold spray. With the synergistic effects of thermal energy from laser irradiation and kinetic energy from high velocity particles impacting, a wider range of materials can be deposited by this technique and unique microstructures and properties can also be obtained. Based on the research results of the authors′ team in the field of SLD, the latest research progress at home and abroad from the aspect of technique principle, deposition material range, phase and microstructure, and performance characterization are summarized. And then, the future trend and challenge of SLD technology are prospected from the perspective of process exploration, equipment development and property evaluation.
引文
[1] Lauwers B, Klocke F, Klink A, et al. Hybrid processes in manufacturing[J]. CIRP Annals, 2014, 63(2): 561-583.
    [2] Yao J H. Research progress and future prospect of laser hybrid manufacturing technology[J]. Electromachining & Mould, 2017(S1): 4-11. 姚建华. 激光复合制造技术研究现状及展望[J]. 电加工与模具, 2017(S1): 4-11.
    [3] Wang H Y, Sun J, Liu L M. Formation and controlling mechanism of pores in laser-TIG hybrid welding of 6061-T6 aluminum alloys at high speed[J]. Chinese Journal of Lasers, 2018, 45(3): 0302001. 王红阳, 孙佳, 刘黎明. 6061-T6铝合金激光-电弧复合高速焊气孔形成及控制机制[J]. 中国激光, 2018, 45(3): 0302001.
    [4] Olakanmi E O, Doyoyo M. Laser-assisted cold-sprayed corrosion- and wear-resistant coatings: a review[J]. Journal of Thermal Spray Technology, 2014, 23(5): 765-785.
    [5] Cockburn A, Bray M, O′Neill W.The laser-assisted cold spray process[J]. The Laser User, 2008, 53: 30-31.
    [6] Bray M, Cockburn A, O′Neill W. The laser-assisted cold spray process and deposit characterisation[J]. Surface & Coatings Technology, 2009, 203(19): 2851-2857.
    [7] Lupoi R, Cockburn A, Bryan C, et al. Hardfacing steel with nanostructured coatings of Stellite-6 by supersonic laser deposition[J]. Light: Science & Applications, 2012, 1(5): e10.
    [8] Lupoi R, Sparkes M, Cockburn A, et al. High speed titanium coatings by supersonic laser deposition[J]. Materials Letters, 2011, 65(21/22): 3205-3207.
    [9] Jones M, Cockburn A,Lupoi R, et al. Solid-state manufacturing of tungsten deposits onto molybdenum substrates with supersonic laser deposition[J]. Materials Letters, 2014, 134(3): 295-297.
    [10] Luo F, Cockburn A, Lupoi R, et al. Performance comparison of Stellite 6? deposited on steel using supersonic laser deposition and laser cladding[J]. Surface & Coatings Technology, 2012, 212: 119-127.
    [11] Luo F, Lupoi R, Cockburn A, et al. Characteristics of Stellite 6 deposited by supersonic laser deposition under optimized parameters[J]. Journal of Iron and Steel Research, International, 2013, 20(2): 52-57.
    [12] Luo F, Kong F Z, William O, et al. Effect of laser heating temperature on coating characteristics of Stellite 6 deposited by cold spray[J]. Acta Armamentarii, 2012, 33(7): 840-846. 骆芳, 孔凡志, 威廉·欧尼尔, 等. 激光加热温度对冷喷Stellite 6合金沉积层表面特性的影响[J]. 兵工学报, 2012, 33(7): 840-846.
    [13] Luo F, Cockburn A, Cai D B, et al. Simulation analysis of Stellite 6? particle impact on steel substrate in supersonic laser deposition process[J]. Journal of Thermal Spray Technology, 2015, 24(3): 378-393.
    [14] Yao J H, Li Z H, Li B, et al. Characteristics and bonding behavior of Stellite 6 alloy coating processed with supersonic laser deposition[J]. Journal of Alloys and Compounds, 2016, 661: 526-534.
    [15] Li B, Jin Y, Yao J H, et al. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings[J]. Optics & Laser Technology, 2018, 100: 27-39.
    [16] Li Z H, Yang L J, Zhang Q L, et al. Comparative research of Stellite 6 coatings prepared by supersonic laser deposition and laser cladding[J]. Chinese Journal of Lasers, 2015, 42(5): 0503008. 李祉宏, 杨理京, 张群莉, 等. 超音速激光沉积与激光熔覆Stellite 6涂层的对比研究[J]. 中国激光, 2015, 42(5): 0503008.
    [17] Yao J H, Yang L J, Li B, et al. Characteristics and performance of hard Ni60 alloy coating produced with supersonic laser deposition technique[J]. Materials & Design, 2015, 83: 26-35.
    [18] Yang L J, Li Z H, Li B, et al. Microstructure and deposition mechanism of Ni60 coatings prepared by supersonic laser deposition[J]. Chinese Journal of Lasers, 2015, 42(3): 0306005. 杨理京, 李祉宏, 李波, 等. 超音速激光沉积法制备Ni60涂层的显微组织及沉积机理[J]. 中国激光, 2015, 42(3): 0306005.
    [19] Li B, Wu L J, Zhang X, et al. Microstructure and corrosion-resistant property of Ti6Al4V coating prepared by supersonic laser deposition[J]. China Surface Engineering, 2018, 31(5): 159-166. 李波, 吴丽娟, 张欣, 等. 超音速激光沉积Ti6Al4V涂层的微观结构及耐蚀性能[J]. 中国表面工程, 2018, 31(5): 159-166.
    [20] Yang L J, Li Z H, Li B, et al. Microstructure of diamond/Ni60 composite coatings produced by supersonic laser deposition and laser cladding[J]. Transactions of Materials and Heat Treatment, 2016, 37(6): 221-227. 杨理京, 李祉宏, 李波, 等. 超音速激光沉积与激光熔覆金刚石强化涂层的组织形态[J]. 材料热处理学报, 2016, 37(6): 221-227.
    [21] Yang L J, Li B, Yao J H, et al. Effects of diamond size on the deposition characteristic and tribological behavior of diamond/Ni60 composite coating prepared by supersonic laser deposition[J]. Diamond and Related Materials, 2015, 58: 139-148.
    [22] Yao J H, Yang L J, Li B, et al. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray[J]. Applied Surface Science, 2015, 330: 300-308.
    [23] Li Z H, Yang L J, Li B, et al. Microstructural characteristics of WC/Stellite 6 composite coating prepared by supersonic laser deposition[J]. Chinese Journal of Lasers, 2015, 42(11): 1106002. 李祉宏, 杨理京, 李波, 等. 超音速激光沉积WC/Stellite 6复合涂层显微组织特征的研究[J]. 中国激光, 2015, 42(11): 1106002.
    [24] Li B, Jin Y, Yao J H, et al. Solid-state fabrication of WC p-reinforced Stellite-6 composite coatings with supersonic laser deposition[J]. Surface & Coatings Technology, 2017, 321: 386-396.
    [25] Li B, Li P H, Zhang Q L, et al. Study on microstructure and wear-resistant properties of WC/SS316L composite coatings prepared by supersonic laser deposition[J]. Electromachining & Mould, 2016(1): 35-39. 李波, 李鹏辉, 张群莉, 等. 超音速激光沉积WC/SS316L复合涂层微观结构及磨损性能研究[J]. 电加工与模具, 2016(1): 35-39.
    [26] Li P H, Li B, Zhang Q L, et al. Comparative study on microstructure and performance of WC/SS316L composite coatings prepared by supersonic laser deposition and laser cladding[J]. Chinese Journal of Lasers, 2016, 43(11): 1102002. 李鹏辉, 李波, 张群莉, 等. 超音速激光沉积与激光熔覆WC/SS316L复合沉积层显微组织与性能的对比研究[J]. 中国激光, 2016, 43(11): 1102002.
    [27] Li B, Yao J H, Zhang Q L, et al. Microstructure and tribological performance of tungsten carbide reinforced stainless steel composite coatings by supersonic laser deposition[J]. Surface & Coatings Technology, 2015, 275: 58-68.
    [28] Jin Y, Li B, Zhang X, et al. Deposition behavior and electrochemical failure mechanism of WC/SS316L metal matrix composites prepared by supersonic laser deposition[J]. Chinese Journal of Lasers, 2018, 45(1): 0102001. 金琰, 李波, 张欣, 等. 金属基复合材料WC/SS316L超音速激光沉积行为及电化学失效机理[J]. 中国激光, 2018, 45(1): 0102001.
    [29] Yao J H, Li P H, Li B, et al. Cold spraying method for controllable laser spot energy distribution: 106283030A[P]. 2017-01-04. 姚建华, 李鹏辉, 李波, 等. 一种可控激光光斑能量分布的冷喷涂方法: 106283030A[P]. 2017-01-04.
    [30] Yao J H, Li B, Chen Z J, et al. Metal-based/diamond laser composite coating and preparation method thereof: 104018156A[P]. 2014-09-03. 姚建华, 李波, 陈智君, 等. 一种金属基/金刚石激光复合涂层及其制备方法: 104018156A[P]. 2014-09-03.
    [31] Yao J H, Yang L J, Li B, et al. Method for supersonic laser deposition of low stress coating: 104005021A[P]. 2014-08-27. 姚建华, 杨理京, 李波, 等. 一种超音速激光沉积低应力涂层的方法: 104005021A[P]. 2014-08-27.
    [32] Yao J H, Li P H, Li B. Coaxial powder feeding device for supersonic laser deposition: 206089807U[P]. 2017-04-12. 姚建华, 李鹏辉, 李波. 一种超音速激光沉积同轴送粉装置: 206089807U[P]. 2017-04-12.
    [33] Yao J H, Li B, Chen Z J, et al. Metal-based/diamond laser composite coating and preparation method thereof: 9945034[P]. 2018-04-17.
    [34] Assadi H, Kreye H, G?rtner F, et al. Cold spraying- a materials perspective[J]. Acta Materialia, 2016, 116: 382-407.
    [35] Riveiro A, Lusquiňos F, Comesaňa R, et al. Supersonic laser spray of aluminium alloy on a ceramic substrate[J]. Applied Surface Science, 2007, 254(4): 926-929.
    [36] Birt A M, Champagne V K, Sisson R D, et al. Statistically guided development of laser-assisted cold spray for microstructural control of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2017, 48(4): 1931-1943.
    [37] Gorunov A I, Gilmutdinov A K. Investigation of coatings of austenitic steels produced by supersonic laser deposition[J]. Optics & Laser Technology, 2017, 88: 157-165.
    [38] Olakanmi E O. Optimization of the quality characteristics of laser-assisted cold-sprayed (LACS) aluminum coatings with Taguchi design of experiments (DOE)[J]. Materials and Manufacturing Processes, 2016, 31(11): 1490-1499.
    [39] Li B, Yang L J, Li Z H, et al. Beneficial effects of synchronous laser irradiation on the characteristics of cold-sprayed copper coatings[J]. Journal of Thermal Spray Technology, 2015, 24(5): 836-847.
    [40] Yuan L J, Luo F, Yao J H. Deposition behavior at different substrate temperatures by using supersonic laser deposition[J]. Journal of Iron and Steel Research, International, 2013, 20(10): 87-93.
    [41] Lu Y H, Yuan L J, Cai D B, et al. Effect of the process parameters on the indentation size of particle deposited using supersonic laser deposition[J]. Rare Metal Materials and Engineering, 2014, 43(10): 2349-2353.
    [42] Kulmala M, Vuoristo P. Influence of process conditions in laser-assisted low-pressure cold spraying[J]. Surface & Coatings Technology, 2008, 202(18): 4503-4508.
    [43] Olakanmi E O, Tlotleng M, Meacock C, et al. Deposition mechanism and microstructure of laser-assisted cold-sprayed (LACS) Al-12 wt.%Si coatings: effects of laser power[J]. JOM, 2013, 65(6): 776-783.
    [44] Tlotleng M, Akinlabi E, Shukla M, et al. Microstructural and mechanical evaluation of laser-assisted cold sprayed bio-ceramic coatings: potential use for biomedical applications[J]. Journal of Thermal Spray Technology, 2015, 24(3): 423-435.
    [45] Yao J H, Yang L J, Li B, et al. Deposition characteristics and microstructure of a Ni60-Ni composite coating produced by supersonic laser deposition[J]. Lasers in Engineering, 2017, 36: 117-131.
    [46] Luo F, Cockburn A, Sparkes M, et al. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition[J]. Defence Technology, 2015, 11(1): 35-47.
    [47] de Feudis M, Caricato A P, Taurino A, et al. Diamond graphitization by laser-writing for all-carbon detector applications[J]. Diamond & Related Materials, 2017, 75: 25-33.
    [48] Wang C L, Gao Y, Wang R, et al. Microstructure of laser-clad Ni60 cladding layers added with different amounts of rare-earth oxides on 6063 Al alloys[J]. Journal of Alloys and Compounds, 2018, 740: 1099-1107.
    [49] Moridi A, Hassani-Gangaraj S M, Guagliano M, et al. Cold spray coating: review of material systems and future perspectives[J]. Surface Engineering, 2014, 30(6): 369-395.
    [50] Aldwell B, Yin S, McDonnell K A, et al. A novel method for metal-diamond composite coating deposition with cold spray and formation mechanism[J]. Scripta Materialia, 2016, 115: 10-13.
    [51] Yin S, Xie Y C, Cizek J, et al. Advanced diamond-reinforced metal matrix composites via cold spray: properties and deposition mechanism[J]. Composites Part B: Engineering, 2017, 113: 44-54.
    [52] Wang Z, Chen X Y, Gong Y F, et al. Tribocorrosion behaviours of cold-sprayed diamond-Cu composite coatings in artificial sea water[J]. Surface Engineering, 2018, 34(5): 392-398.
    [53] Guan Z Z. Handbook of laser processing[M]. Beijing: China Metrology Publishing House, 2007. 关振中. 激光加工工艺手册[M]. 北京: 中国计量出版社, 2007.
    [54] Zhou X L, Zhang J S, Wu X K. Advanced cold spray technology and its applications[M]. Beijing: China Machine Press, 2011. 周香林, 张济山, 巫湘坤. 先进冷喷涂技术与应用[M]. 北京: 机械工业出版社, 2011.
    [55] Koivuluoto H, Milanti A, Bolelli G, et al. Structures and properties of laser-assisted cold-sprayed aluminum coatings[J]. Materials Science Forum, 2016, 879: 984-989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700