用户名: 密码: 验证码:
基于压机热模拟实验的页岩孔隙演化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shale Pore Evolution Characteristics Based on Semi-Closed Pyrolysis Experiment
  • 作者:张毅 ; 胡守志 ; 廖泽文 ; 徐建兵 ; 沈传波
  • 英文作者:Zhang Yi;Hu Shouzhi;Liao Zewen;Xu Jianbing;Shen Chuanbo;Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education,China University of Geosciences;Guangzhou Institute of Geochemistry,Chinese Academy of Sciences;
  • 关键词:三塘湖盆地 ; 芦草沟组页岩 ; 热模拟 ; 孔隙演化 ; 沥青 ; 石油地质
  • 英文关键词:Santanghu Basin;;Lucaogou Formation shale;;pyrolysis experiment;;pore evolution;;bitumen;;petroleum geology
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:中国地质大学构造与油气资源教育部重点实验室;中国科学院广州地球化学研究所;
  • 出版日期:2018-11-14 15:38
  • 出版单位:地球科学
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金面上项目(No.41572109);; 国家科技重大专项子课题(Nos.2016ZX05024-002-005,2017ZX05032-002-004);; 湖北省自然科学杰出青年基金项目(No.2016CFA055)
  • 语种:中文;
  • 页:DQKX201903025
  • 页数:10
  • CN:03
  • ISSN:42-1874/P
  • 分类号:305-314
摘要
富有机质页岩微观孔隙结构是影响页岩油气富集的重要因素,但热演化过程中的孔隙结构变化特征不甚清楚,是当前领域研究的难点.用新疆三塘湖盆地中二叠统芦草沟组低成熟油页岩样品开展高温高压半封闭体系热模拟实验,对各温度阶段的样品进行抽提,利用低温吸附技术定量表征未抽提和抽提样品的孔隙结构,揭示低熟到过成熟页岩样品的孔隙演化特征.结果表明:低熟-成熟阶段,中、大孔量随热模拟温度上升而降低,微孔量先降低再升高,高压及滞留油/沥青对所有孔隙均有一定的抑制作用;高-过成熟阶段,孔含量明显上升,残留沥青中会产生微孔及中、大孔.在热模拟实验中温度、压力条件对孔隙结构具有重要影响,有机质演化产物与孔隙演化趋势紧密相关.
        The microscopic pore structure of organic-rich shale is an important factor affecting the enrichment of shale gas,but the characteristics of pore structure change during thermal evolution are not clear,which is difficult for the current research.Taking the low-mature oil shale samples of the Middle Permian Lucaogou Formation in the Santanghu Basin,Xinjiang as an example,a high-temperature and high-pressure semi-closed pyrolysis experiment was carried out,and the thermal simulation samples at various temperature stages were extracted,using low-temperature adsorption technique to characterize the pore structure of the un-extracted and extracted sample and to reveal the pore evolution characteristics of the low mature to over mature shale samples.The results show that in the low-mature to mature stage,the content of mesopores decreases with the increase of thermal simulation temperature,and the micropore content decreases first and then rises.High pressure and residual oil/bitumen have certain inhibitory effect for all pores.While at the high maturity stage,the pore content increases significantly,and the micropore and mesopore are generated in the residual bitumen.It indicates that temperature and pressure conditions have important influence on pore structure in thermal simulation experiments.The thermal evolution of organic matter and its evolution products are closely related to the evolution trend of shale pores.
引文
Bernard,S.,Horsfield,B.,Schulz,H.M.,et al.,2012.Geochemical Evolution of Organic-Rich Shales with Increasing Maturity:A STXM and TEM Study of the Posidonia Shale(Lower Toarcian,Northern Germany).Marine and Petroleum Geology,31(1):70-89.https://doi.org/10.1016/j.marpetgeo.2011.05.010
    Cao,T.T.,Deng,M.,Liu,H.,et al.,2018.Influences of Soluble Organic Matter on Reservoir Properties of Shale.Lithologic Reservoirs,30(3):43-51(in Chinese with English abstract).
    Chen,J.,Xiao,X.M.,2014.Evolution of Nanoporosity in OrganicRich Shales during Thermal Maturation.Fuel,129:173-181.https://doi.org/10.1016/j.fuel.2014.03.058
    Chen,Z.H.,Wang,T.G.,Liu,Q.,et al.,2015.Quantitative E-valuation of Potential Organic-Matter Porosity and Hydrocarbon Generation and Expulsion from Mudstone in Continental Lake Basins:A Case Study of Dongying Sag,Eastern China.Marine and Petroleum Geology,66:906-924.https://doi.org/10.1016/j.marpetgeo.2015.07.027
    Clarkson,C.R.,Solano,N.,Bustin,R.M.,et al.,2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS,Gas Adsorption,and Mercury Intrusion.Fuel,103:606-616.https://doi.org/10.1016/j.fuel.2012.06.119
    Connan,J.,1974.Time-Temperature Relation in Oil Genesis.AAPG Bulletin,58(12):2516-2521.
    Dai,F.Y.,Hao,F.,Hu,H.Y.,et al.,2017.Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas,Eastern Sichuan Basin.Earth Science,42(7):1185-1194(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.096
    Dong,C.M.,Ma,C.F.,Luan,G.Q.,et al.,2015.Mud Shale Thermal Simulation Experiment and Diagenetic Evolution Model.Acta Sedimentologica Sinica,33(5):1053-1061(in Chinese with English abstract).
    Du,J.Y.,Cheng,B.,Liao,Z.W.,2014.Geochemical Characterization of Gaseous Pyrolysates from a Permian Kerogen of Santanghu Basin.Geochimica,43(5):510-517(in Chinese with English abstract).
    Duan,D.D.,Zhang,D.N.,Ma,X.X.,et al.,2016.Chemical and Structural Characterization of Thermally Simulated Kerogen and Its Relationship with Microporosity.Marine and Petroleum Geology,89:4-13.https://doi.org/10.1016/j.marpetgeo.2016.12.016
    Fu,J.M.,Sheng,G.Y.,1990.Coal-to-Hydrocarbon Geochemistry.Science Press,Beijing,41-45(in Chinese).
    Guo,H.J.,2017.Pore Structure and Thermal Evolution of Yanchang Shales from Southeastern Ordos Basin(Dissertation).Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou(in Chinese with English abstract).
    Guo,H.J.,Wang,X.Z.,Zhang,L.X.,et al.,2014.Adsorption of N2and CO2on Mature Shales before and after Extraction and Its Implication for Investigations of Pore Structures.Geochimica,43(4):408-414(in Chinese with English abstract).
    Hou,Y.G.,He,S.,Wang,J.G.,et al.,2015.Preliminary Study on the Pore Characterization of Lacustrine Shale Reservoirs Using Low Pressure Nitrogen Adsorption and Field Emission Scanning Electron Microscopy Methods:A Case Study of the Upper Jurassic Emuerhe Formation,Mohe Basin,Northeastern China.Canadian Journal of Earth Sciences,52(5):294-306.https://doi.org/10.1139/cjes-2014-0188
    Hu,H.Y.,2013.Porosity Evolution of Organic-Rich Shale with Thermal Maturity Increasing.Acta Petrolei Sinica,34(5):820-825(in Chinese with English abstract).
    Katz,B.J.,Arango,I.,2018.Organic Porosity:A Geochemist's View of the Current State of Understanding.Organic Geochemistry,123:1-16.https://doi.org/10.1016/j.orggeochem.2018.05.015
    Kuila,U.,Prasad,M.,2013.Specific Surface Area and PoreSize Distribution in Clays and Shales.Geophysical Prospecting,61(2):341-362.https://doi.org/10.1111/1365-2478.12028
    Li,M.Y.,Zhan,J.H.,Tian,Y.,et al.,2017.Reaction Characteristics of Intermediate Product during Oil Shale Pyrolysis.The Chinese Journal of Process Engineering,17(6):1316-1321(in Chinese with English abstract).
    Loucks,R.G.,Reed,R.M.,2014.Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrocks.Gulf Coast Association of Geological Societies Transactions,3:51-60.
    Lu,J.M.,Ruppel,S.C.,Rowe,H.D.,2015.Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale.AAPG Bulletin,99(2):333-357.https://doi.org/10.1306/08201414055
    Ma,Z.L.,Zheng,L.J.,Xu,X.H.,et al.,2017.Thermal Simulation Experiment on Formation and Evolution of Organic Pores in Organic-Rich Shale.Acta Petrolei Sinica,38(1):23-30(in Chinese with English abstract).
    Mastalerz,M.,Drobniak,A.,Stankiewicz,A.B.,2018.Origin,Properties,and Implications of Solid Bitumen in SourceRock Reservoirs:A Review.International Journal of Coal Geology,195:14-36.https://doi.org/10.1016/j.coal.2018.05.013
    Neaman,A.,Pelletier,M.,Villieras,F.,2003.The Effects of Exchanged Cation,Compression,Heating and Hydration on Textural Properties of Bulk Bentonite and Its Corresponding Purified Montmorillonite.Applied Clay Science,22(4):153-168.https://doi.org/10.1016/s0169-1317(02)00146-1
    Pollastro,R.M.,2007.Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous(Unconventional)Gas Accumulation,Fort Worth Basin,Texas.AAPG Bulletin,91(4):551-578.https://doi.org/10.1306/06200606007
    Ross,D.J.K.,Bustin,R.M.,2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.MarineandPetroleum Geology,26(6):916-927.https://doi.org/10.1016/j.marpetgeo.2008.06.004
    Tang,X.,Zhang,J.C.,Jin,Z.J.,et al.,2015.Experimental Investigation of Thermal Maturation on Shale Reservoir Properties from Hydrous Pyrolysis of Chang 7Shale,Ordos Basin.Marine and Petroleum Geology,64:165-172.https://doi.org/10.1016/j.marpetgeo.2015.02.046
    Waples,D.W.,1980.Time and Temperature in Petroleum Formation:Application of Lopatin's Method to Petroleum Exploration.AAPG Bulletin,64(6):916-926.doi:10.1306/2f9193d2-16ce-11d7-8645000102c1865d
    Wei,M.M.,Xiong,Y.Q.,Zhang,L.,et al.,2016.The Effect of Sample Particle Size on the Determination of Pore Structure Parameters in Shales.International Journal of Coal Geology,163:177-185.https://doi.org/10.1016/j.coal.2016.07.013
    Wu,S.T.,Zhu,R.K.,Cui,J.G.,et al.,2015.Characteristics of Lacustrine Shale Porosity Evolution,Triassic Chang 7Member,Ordos Basin,NW China.Petroleum Exploration and Development,42(2):185-195.https://doi.org/10.1016/s1876-3804(15)30005-7
    Xue,L.H.,Yang,W.,Zhong,J.A.,et al.,2015.Pore Evolution of the Organic-Rich Shale from Simulated Experiment with Geological Constrains,Samples from Yanchang Formation in Ordos Basin.Acta Geologica Sinica,89(5):970-978(in Chinese with English abstract).
    Yang,F.,Ning,Z.F.,Kong,D.T.,et al.,2013.Pore Structure of Shales from High Pressure Mercury Injection and Nitrogen Adsorption Method.NaturalGasGeoscience,24(3):450-455(in Chinese with English abstract).
    Zargari,S.,Canter,K.L.,Prasad,M.,2015.Porosity Evolution in Oil-Prone Source Rocks.Fuel,153:110-117.https://doi.org/10.1016/j.fuel.2015.02.072
    Zhai,G.Y.,Wang,Y.F.,Bao,S.J.,et al.,2017.Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China.EarthScience,42(7):1057-1068(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.085
    Zhang,L.,Xiong,Y.Q.,Li,Y.,et al.,2017.DFT Modeling of CO2 and Ar Low-Pressure Adsorption for Accurate Nanopore Structure Characterization in Organic-Rich Shales.Fuel,204:1-11.https://doi.org/10.1016/j.fuel.2017.05.046
    Zhao,J.L.,Tang,D.Z.,Xu,H.,et al.,2015.Fine Characterization of the Shale Micropore Structures Based on the Carbon Dioxide Adsorption Experiment.Petroleum Geology and Oilfield Development in Daqing,34(5):156-161(in Chinese with English abstract).
    Zou,C.N.,Dong,D.Z.,Wang,Y.M.,et al.,2016.Shale Gas in China:Characteristics,Challenges and Prospects(II).Petroleum Exploration and Development,43(2):166-178(in Chinese with English abstract).
    曹涛涛,邓模,刘虎,等,2018.可溶有机质对泥页岩储集物性的影响.岩性油气藏,30(3):43-51.
    戴方尧,郝芳,胡海燕,等,2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学,42(7):1185-1194.https://doi.org/10.3799/dqkx.2017.096
    董春梅,马存飞,栾国强,等,2015.泥页岩热模拟实验及成岩演化模式.沉积学报,33(5):1053-1061.
    杜军艳,程斌,廖泽文,2014.三塘湖盆地二叠系干酪根热模拟气体产物的地球化学特征.地球化学,43(5):510-517.
    傅家谟,盛国英,1990.煤成烃地球化学.北京:科学出版社,41-45.
    郭慧娟,2017.鄂尔多斯盆地东南部延长组页岩的孔隙结构与热演化特征(博士学位论文).广州:中国科学院广州地球化学研究所.
    郭慧娟,王香增,张丽霞,等,2014.抽提前/后成熟页岩对氮气、二氧化碳的吸附特征及其对孔隙研究的意义.地球化学,43(4):408-414.
    胡海燕,2013.富有机质Woodford页岩孔隙演化的热模拟实验.石油学报,34(5):820-825.
    李梦雅,战金辉,田勇,等,2017.油页岩热解中间产物的反应特性.过程工程学报,17(6):1316-1321.
    马中良,郑伦举,徐旭辉,等,2017.富有机质页岩有机孔隙形成与演化的热模拟实验.石油学报,38(1):23-30.
    薛莲花,杨巍,仲佳爱,等,2015.富有机质页岩生烃阶段孔隙演化---来自鄂尔多斯延长组地质条件约束下的热模拟实验证据.地质学报,89(5):970-978.
    杨峰,宁正福,孔德涛,等,2013.高压压汞法和氮气吸附法分析页岩孔隙结构.天然气地球科学,24(3):450-455.
    翟刚毅,王玉芳,包书景,等,2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学,42(7):1057-1068.https://doi.org/10.3799/dqkx.2017.085
    赵俊龙,汤达祯,许浩,等,2015.基于二氧化碳吸附实验的页岩微孔结构精细表征.大庆石油地质与开发,34(5):156-161.
    邹才能,董大忠,王玉满,等,2016.中国页岩气特征、挑战及前景(二).石油勘探与开发,43(2):166-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700