用户名: 密码: 验证码:
脱气温度和样品粒径对致密砂岩低温氮气吸附实验结果的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Degassing Temperature and Particle Size on Low-Temperature Nitrogen Adsorption in Tight Sandstones
  • 作者:李传明 ; 薛海涛 ; 王民 ; 卢双舫 ; 李进步 ; 田伟超
  • 英文作者:LI Chuan-ming;XUE Hai-tao;WANG Min;LU Shuang-fang;LI Jin-bu;TIAN Wei-chao;Research Institute of Unconventional Oil & Gas and Renewable Energy, China University of Petroleum;School of Geosciences, China University of Petroleum;
  • 关键词:脱气温度 ; 样品粒径 ; 低温氮气吸附 ; 孔隙结构 ; 高台子致密砂岩
  • 英文关键词:degassing temperature;;particle size;;low-temperature nitrogen adsorption;;pore structure;;tight sandstones in the Gaotaizi Reservoir
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国石油大学(华东)非常规油气与新能源研究院;中国石油大学(华东)地球科学与技术学院;
  • 出版日期:2018-12-11 13:21
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金(41672116);; 国家油气重大专项(2016ZX05046001-005);; 中央高校基本科研业务费专项资金(17CX05012)
  • 语种:中文;
  • 页:KYDH201902012
  • 页数:9
  • CN:02
  • ISSN:52-1102/P
  • 分类号:112-120
摘要
基于静态体积法的低温氮气吸附实验已广泛用于分析致密储集层的孔隙结构。本文探索了脱气温度和样品粒径对松辽盆地高台子致密砂岩低温氮气吸附实验结果的影响。结果显示,110℃的脱气条件并不能清除束缚水而使得孔隙体积、比表面积均偏低,300℃的脱气条件容易破坏样品中黏土矿物的结构令孔隙体积、比表面积减小,200℃是比较合适的脱气温度,既能去除束缚水又不破坏黏土矿物结构。样品粒径从5~10目减小至10~30目,氮气探测的孔隙数量增多使比表面积、孔体积增大。从10~30目减小至180~200目,黏土矿物相对含量降低令比表面积、孔体积显著减小;小于200目的样品中减少的黏土矿物主要集中在大于200目的岩样中,因此大于200目岩样的测定结果最高。因此,10~30目是利用低温氮气吸附实验寻求分析致密砂岩储集层特征的最佳粒径范围。
        Static-volumetric method based low-temperature nitrogen adsorption test is widely used to analyze the pore characteristics of tight sandstone. This paper evaluate the effects of degassing temperature, and sample particle size on low-temperature nitrogen adsorption of tight sandstones from the Gaotaizi Reservoir, Songliao Basin. The result showed that: Degassing temperature affects the structure of irreducible water and clay minerals in variable degrees. Degassing at 110 ℃ can not remove the irreducible water, resulting in low pore volume and specific surface area, In comparison, degassing at 300 ℃ is easy to destroy the clay mineral structure of the sample, which decrease the pore volume and specific surface area. Thus, the temperature of 200 ℃ is more appropriate as degassing temperature, both in removing the irreducible water and protecting the clay mineral structure; Particle size has a significant impact on the test results. As the particle size is decreased from 5~10 mesh to 10~30 mesh, increasing the number of pores could be detected by nitrogen so that the specific surface area and pore volume would increase. On the contrary, when particle size reduced from 10~30 mesh to 180~200 mesh, the decrease of relative content of clay minerals in samples could significantly lower the specific surface area and pore volume. Clay minerals are mainly concentrated in samples larger than 200 mesh, and samples larger than 200 mesh contain highest values. Therefore, particle size of 10~30 mesh is the optimum range for low-temperature nitrogen adsorption test for analyzing the characteristics of tight sandstone reservoirs.
引文
Barrett E P,Joyner L G,Halenda P P.1951.The determination of pore volume and area distributions in porous substances.I.Computations from nitrogen isotherms.Journal of the American Chemical society,73(1):373-380
    Brunauer S,Emmett P H,Teller E.1938.Adsorption of gases in multimolecular layers.Journal of the American Chemical Society,60(2):309-319
    Chen Y Y,Wei L,Mastalerz M,Schimmelmann A.2015.The effect of analytical particle size on gas adsorption porosimetry of shale.International Journal of Coal Geology,138:103-112
    Cheng H,Wang Q,Zhang S,Han X.2015a.The effects of different experimental conditions on the detected results of coal pore characteristics.Coke and Chemistry,58(9):329-341
    Cheng H,Wang Q,Zhang S,Guo R.2015b.Effect of different experimental conditions on the specific surface area calculation of coal.Coke and Chemistry,58(8):284-289
    Desbois G,Urai J L,Kukla P A,Konstanty J,Baerle C.2011.Highresolution 3D fabric and porosity model in a tight gas sandstone reservoir:A new approach to investigate microstructures from mm-to nm-scale combining argon beam cross-sectioning and SEM imaging.Journal of Petroleum Science and Engineering,78(2):243-257
    Drits V A,Mc Carty D K.2007.The nature of structure-bonded H2O in illite and leucophyllite from dehydration and dehydroxylation experiments.Clays and Clay Minerals,55(1):45-58
    Gao H,Li H A.2016.Pore structure characterization,permeability evaluation and enhanced gas recovery techniques of tight gas sandstones.Journal of Natural Gas Science and Engineering,28:536-547
    Han H,Cao Y,Chen S J,Lu J G,Huang C X,Zhu H H,Zhan P,Gao Y.2016.Influence of particle size on gas-adsorption experiments of shales:An example from a Longmaxi Shale sample from the Sichuan Basin,China.Fuel,186:750-757
    Handwerger D A,Keller J,Vaughn K.2011.Improved petrophysical core measurements on tight shale reservoirs using retort and crushed samples.In:SPE Annual Technical Conference and Exhibition.Denver,Colorado,USA:SPE,147456
    Jin Z H,Firoozabadi A.2013.Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations.Fluid Phase Equilibria,360:456-465
    Kuila U,Prasad M.2013.Specific surface area and pore-size distribution in clays and shales.Geophysical Prospecting,61(2):341-362
    Ma Y,Zhong N N,Li D H,Pan Z J,Cheng L J,Liu K Y.2015.Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area,China:A possible microscopic mechanism for gas preservation.International Journal of Coal Geology,137:38-54
    Mastalerz M,Hampton L,Drobniak A,Loope H.2017.Significance of analytical particle size in low-pressure N2and CO2adsorption of coal and shale.International Journal of Coal Geology,178:122-131
    Schmitt M,Fernandes C P,Wolf F G,da Cunha Neto J A B,Rahner CP,dos Santos V S S.2015.Characterization of Brazilian tight gas sandstones relating permeability and Angstrom-to micron-scale pore structures.Journal of Natural Gas Science and Engineering,27(2):785-807
    Seaton N A,Walton J P R B,Quirke N.1989.A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements.Carbon,27(6):853-861
    S'rodońJ,Ma Carty D K.2008.Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements.Clays and Clay Minerals,56(2):155-174
    Tarazona P.1985.Free-energy density functional for hard spheres.Physical Review A,31(4):2672-2679
    Tian H,Pan L,Xiao X M,Wilkins R W T,Meng Z P,Huang B J.2013.A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N2adsorption and FE-SEM methods.Marine and Petroleum Geology,48:8-19
    Wang G C,Ju Y W.2015.Organic shale micropore and mesopore structure characterization by ultra-low pressure N2physisorption:Experimental procedure and interpretation model.Journal of Natural Gas Science and Engineering,27:452-465
    Wang G W,Chang X C,Yin W,Li Y,Song T T.2017.Impact of diagenesis on reservoir quality and heterogeneity of the Upper Triassic Chang 8 tight oil sandstones in the Zhenjing area,Ordos Basin,China.Marine and Petroleum Geology,83:84-96
    Zhang L C,Lu S F,Xiao D S,Li B.2017a.Pore structure characteristics of tight sandstones in the northern Songliao Basin,China.Marine and Petroleum Geology,88:170-180
    Zhang L C,Lu S F,Xiao D S,Gu M W.2017b.Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites.Journal of Natural Gas Science and Engineering,38:434-449
    Zou C N,Zhu R K,Liu K Y,Su L,Bai B,Zhang X X,Yuan X J,Wang J H.2012.Tight gas sandstone reservoirs in China:Characteristics and recognition criteria.Journal of Petroleum Science and Engineering,88-89:82-91
    Zou C N,Yang Z,Tao S Z,Yuan X J,Zhu R K,Hou L H,Wu S T,Sun L,Zhang G S,Bai B,Wang L,Gao X H,Pang Z L.2013.Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum:The Ordos Basin,North-Central China.Earth-Science Reviews,126:358-369
    伏万军.2000.粘土矿物成因及对砂岩储集性能的影响.古地理学报,2(3):59-68
    吉利明,邱军利,夏燕青,张同伟.2012.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性.石油学报,33(2):249-256
    蒋裕强,陈林,蒋婵,覃明友,文秀,甘辉,王猛,胡朝阳.2014.致密储层孔隙结构表征技术及发展趋势.地质科技情报,33(3):63-70
    李超正,柳广弟,曹喆,牛子铖,牛小兵,王朋,张梦媛,张凯迪.2016.鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征.天然气地球科学,27(7):1235-1247
    孟智强,郭和坤,刘强,姜柏材,李海波.2015.塔里木盆地致密砂岩气储层微观孔隙结构.中南大学学报(自然科学版),46(8):3032-3039
    吴伟,刘惟庆,唐玄,周雪晴,郑伟,宋党育.2014.川西坳陷富有机质页岩孔隙特征.中国石油大学学报(自然科学版),38(4):1-8
    张大智.2017.利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征:以松辽盆地徐家围子断陷沙河子组为例.天然气地球科学,28(6):898-908
    邹才能,朱如凯,吴松涛,杨智,陶士振,袁选俊,侯连华,杨华,徐春春,李登华,白斌,王岚.2012.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例.石油学报,33(2):173-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700