用户名: 密码: 验证码:
西藏玉龙斑岩铜矿带南段日曲花岗闪长斑岩成因:锆石U-Pb年代学和地球化学约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogenesis of the Riqu Granodiorite Porphyry in Southern Yulong Porphyry Copper Belt: Constraints from Zircon U-Pb Geochronology and Whole-Rock Geochemistry
  • 作者:张海 ; 王保弟 ; 于远山 ; 何海 ; 肖鹏 ; 王富明
  • 英文作者:ZHANG Hai;WANG Bao-di;YU Yuan-shan;HE Hai;XIAO Peng;WANG Fu-ming;Chengdu Institute of Geology and Mineral Resources;No.405 Sichuan Bureau of Geological Exploration and Development of Mineral Resource;
  • 关键词:花岗闪长斑岩 ; 锆石U-Pb年龄 ; 地球化学特征 ; 玉龙斑岩铜矿带 ; 西藏东部
  • 英文关键词:granodiorite porphyry;;zircon U-Pb dating;;geochemical characteristics;;Yulong porphyry copper belt;;eastern Tibet
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:成都地质矿产研究所;四川省地质矿产勘查开发局405地质队;
  • 出版日期:2019-01-23 10:55
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金项目(KJ20185601);; 中国地质调查局地质调查项目(DD20160016)
  • 语种:中文;
  • 页:KYDH201902019
  • 页数:16
  • CN:02
  • ISSN:52-1102/P
  • 分类号:183-198
摘要
为探讨西藏玉龙斑岩铜矿带南段斑岩的成因及其动力学机制,对该铜矿带南段日曲岩体开展了岩石学、同位素年代学和地球化学研究。结果显示,两件花岗闪长斑岩锆石U-Pb年龄分别为(38.2±0.2)Ma、(38.8±0.2)Ma,为喜马拉雅早期;花岗闪长斑岩富集大离子亲石元素,亏损高场强元素,属弱过铝质高钾钙碱性花岗岩;斑岩具有C型埃达克岩的地球化学特征,为加厚下地壳部分熔融的产物,未经明显的地壳混染;源区残留相主要由角闪石、石榴子石、金红石组成,并经历了较弱的壳幔混合作用。研究表明,日曲岩体的形成与印度板块与欧亚板块碰撞诱发妥坝-芒康左行走滑断裂活动有关,下地壳部分熔融及少量幔源物质的混入使斑岩具有壳幔混合的特征。
        In order to explore the genesis and geodynamic setting of porphyries in southern segment of the Yulong porphyry copper belt, petrology, isotope geochronology and geochemistry of the Riqu intrusion are performed in this study. Two granodiorite porphyries of the Riqu intrusion have zircon U-Pb ages of(38.2±0.2) Ma and(38.8±0.2) Ma, respectively, belonging to early Himalaya period. Granodiorite porphyry is weakly peraluminous high K calc-alkaline granite. It has enriched in large ion lithophile elements and depleted in high field strength elements. The porphyry has the geochemical characteristics of C-type Adakite, indicative of the product of partial melting of thickened lower crust, without significant crust assimilation. The residual phase of the source region is mainly composed of hornblende, garnet, and rutile. The parental magmas were formed by the partial melting of lower crust with minor addition of mantle components. Thus, the formation of the Riqu intrusion is related to the Tuoba-Mangkang left-lateral strike-slip fault activity triggered by Indian plate and Eurasian plate collision.
引文
Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146
    Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy & Petrology, 144(3): 347-364
    Belousova E, Griffin W, O'Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622
    Blichert-Toft J, Chauvel C, Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy & Petrology, 127(3): 248-260
    Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy & Petrology, 134(1): 33-51
    Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024
    Chung S L, Chu M F, Ji J Q, O'Reilly S Y, Pearson N J, Liu D Y, Lee T Y, Lo C H. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36-48
    Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665
    Deng J, Wang Q F, Li G J, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299
    Fisher C M, Vervoort J D, Hanchar J M. 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical Geology, 363: 125-133
    Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147
    Hoskin P W O, Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439
    Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62
    Hou Z Q, Ma H W, Zaw K, Zhang Y Q, Wang M J, Wang Z, Pan G T, Tang R L. 2003. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98: 125-145
    Hu Z C, Gao S, Liu Y S, Hu S H, Chen H H, Yuan H L. 2008a. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101
    Hu Z C, Liu Y S, Gao S, Hu S H, Dietiker R, Günther D. 2008b. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 23(9): 1192-1203
    Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Lu Y. 2012a. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399
    Hu Z C, Liu Y S, Gao S, Xiao S Q, Zhao L S, Günther D, Li M, Zhang W, Zong K Q. 2012b. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57
    Huang X L, Xu Y G, Lan J B, Yang Q J, Luo Z Y. 2009. Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze Craton: Partial melts of a thickened lower crust. Lithos, 112(3-4): 367-381
    Jiang Y H, Jiang S Y, Ling H F, Dai B Z. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth & Planetary Science Letters, 241(3-4): 617-633
    Li J X, Qin K Z, Li G M, Cao M J, Xiao B, Chen L, Zhao J X, Evans N J, McInnes B I A. 2012. Petrogenesis and thermal history of the Yulong porphyry copper deposit, eastern Tibet: Insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis. Mineralogy & Petrology, 105(3-4): 201-221
    Liang H Y, Zhang Y Q, Xie Y W, Lin W, Campbell I H, Ngxiang Y H. 2005. Geochronologial and geochemical study on the Yulong porphyry copper ore belt in eastern Tibet, China. Berlin Heidelberg: Springer: 1235-1237
    Liang H Y, Sun W D, Su W C, Zartman R E. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587-596
    Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008a. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
    Liu Y S, Zong K Q, Kelemen P B, Gao S. 2008b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1-2): 133-153
    Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
    Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546
    Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 1-70
    Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth & Planetary Science Letters, 243(3-4): 581-593
    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5): 635-643
    Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24
    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224
    Miller C, Schuster R, Kl?tzli U, Frank W, Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424
    M?ller A, O'Brien PJ, Kennedy A, Kr?ner A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: Vance D, Moller W, Villa I M, eds. Geochronology: Linking the Isotopic Record with Petrology and Textures. Geological Society, London, Special Publications, 220: 65-81
    Münker C. 1998. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: Source constraints and application of refined ICPMS techniques. Chemical Geology, 144(1-2): 23-45
    Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81
    Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521
    Prouteau G, Scaillet B, Pichavant M, Maury R. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410(6825): 197-200
    Prouteau G, Scaillet B. 2003. Experimental constraints on the origin of the 1991 Pinatubo Dacite. Journal of Petrology, 44(12): 2203-2241
    Rapp R P, Watson E B. 1995. Dehydration melting of Metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931
    Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356
    Rudnick R L, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
    Sajona F G, Maury R C, Pubellier M, Leterrier J, Bellon H, Cotten J. 2000. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos, 54(3-4): 173-206
    Sisson T W. 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. Chemical Geology, 117(1-4): 331-344
    Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth & Planetary Science Letters, 182(1): 115-125
    S?derlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345
    Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution. Oxford: Blackwell Scientific Publications, 57-72
    Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, LI C F, Xiong X L, Ma J L. 2006a. Petrogenesis of Adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144
    Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P, Xiong X L, Bao Z W, Li C F, Bai Z H. 2006b. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446
    Wu F Y, Jahn B M, Wilde S, Sun D Y. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113
    Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126
    陈喜连, 黄文婷, 邹银桥, 梁华英, 张健, 张玉泉. 2016. 玉龙斑岩铜矿带南段含矿斑岩体锆石U-Pb年龄、地球化学特征及南北段成矿规模差异分析. 岩石学报, 32(8): 2522-2534
    成都地质调查中心. 2017. 西藏芒康1:5万区域地质调查总结报告(内部报告),1-153
    邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509
    葛小月, 李献华, 陈志刚, 李伍平. 2002. 中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因: 对中国东部地壳厚度的制约. 科学通报, 47(6): 474-480
    侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型. 中国地质, 33(2): 340-351
    侯增谦, 杨志明. 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型. 地质学报, 83(12): 1779-1817
    姜耀辉, 蒋少涌, 凌洪飞, 戴宝章. 2006. 陆-陆碰撞造山环境下含铜斑岩岩石成因:以藏东玉龙斑岩铜矿带为例. 岩石学报, 22(3): 697-706
    梁华英, 莫济海, 孙卫东, 喻亨祥, 张玉泉, Allen C M. 2008. 藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析. 岩石学报, 24(10): 2352-2358
    林彬, 王立强, 唐菊兴, 宋扬, 周新, 刘治博, 高一鸣, 唐晓倩, 徐瑞阁, 陈早军. 2017. 西藏玉龙铜矿带包买矿床含矿斑岩锆石U-Pb年代学. 地球科学, 42(9): 1454-1471
    林清茶, 夏斌, 张玉泉. 2006. 云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义. 地质通报, 25(1): 133-137
    史长义, 鄢明才, 迟清华. 2008. 中国花岗岩类化学元素丰度. 北京: 地质出版社, 15-20
    唐仁鲤, 罗怀松. 1995. 西藏玉龙斑岩铜(钼)矿带地质. 北京: 地质出版社, 1-320
    王成辉, 唐菊兴, 侯可军, 高一鸣, 陈建平, 郝金华, 应立娟, 章奇志, 刘耀文, 凡韬. 2011. 西藏玉龙铜钼矿区斑岩体Hf同位素特征及其地质意义. 矿床地质, 30(2): 292-304
    王蝶, 毕献武, 卢焕章, 刘张荣. 2017. 金沙江-红河富碱侵入岩带斑岩型铜、金矿床的成矿流体研究. 大地构造与成矿学, 41(1): 91-107
    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220
    吴伟中, 夏斌, 张玉泉, 董冰华, 夏中曦. 2013. 西藏玉龙成矿带斑岩Cu-Mo矿床地质地球化学特征及成矿机制探讨:玉龙和多霞松多对比研究. 大地构造与成矿学, 37(3): 440-454
    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604
    西藏自治区地质调查院. 2007. 1:25万八宿县幅、贡觉县幅、然乌区幅、芒康县幅区域地质调查报告, 1-349
    西藏地质矿产局. 1991. 1:20万芒康幅、盐井幅区域地质调查报告,1-127
    夏斌, 耿庆荣, 张玉泉. 2007. 滇西鹤庆地区六合透辉石正长斑岩锆石SHRIMP U-Pb年龄及其意义. 地质通报, 26(6): 692-697
    熊小林, Adam J, Green T H, 牛贺才, 吴金花, 蔡志勇. 2005. 变质玄武岩部分熔体微量元素特征及埃达克熔体产生条件. 中国科学(D辑), 35(9): 837-846
    薛传东, 骆少勇, 宋玉财, 杨志明, 韩艳伟, 黄琴辉, 李敬, 魏爱英. 2010. 滇西北中甸陆家村石英二长斑岩的锆石SHRIMP定年及其意义. 岩石学报, 26(6): 1845-1855
    杨富成,祝向平,李文昌,江小均,刘鸿飞,刘俊,杨后斌,李勇.2018. 藏东芒康县巴达铜金矿床地质特征及找矿方向研究, 待刊
    张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244
    张旗, 王焰, 王元龙. 2003. 埃达克岩与构造环境. 大地构造与成矿学, 27(2): 101-108
    张世铭, 肖渊甫, 龚婷婷, 何佳乐, 王强, 张林, 孙建东. 2012. 西藏玉龙成矿带各贡弄、恒星错、马牧普地球化学异常优选评价. 矿物岩石地球化学通报, 31(4): 354-360
    张玉泉, 谢应雯, 梁华英, 邱华宁, 李献华, 钟孙霖. 1998. 藏东玉龙铜矿带含矿斑岩及成岩系列. 地球化学, 27(3): 236-243
    赵振华, 熊小林, 王强, 乔玉楼. 2008. 铌与钽的某些地球化学问题. 地球化学, 37(4): 304-320
    钟大赉,丁林,季建清,张进江,刘福田,刘建华,闫晓蔚. 2001. 中国西部新生代岩石圈汇聚和东部岩石圈离散的耦合关系与古环境格局演变的探讨. 第四纪研究, 21(4): 303-312
    钟大赉,张进江. 2000. 造山带岩石层多向层架构造及其对新生代岩浆活动制约:以三江及邻区为例. 中国科学(D辑), 30(s1): 1-8
    朱明田, 武广, 解洪晶, 刘军, 张连昌. 2011. 新疆西天山科克赛岩体年代学、地球化学及地质意义. 岩石学报, 27(10): 3041-3054

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700