用户名: 密码: 验证码:
根瘤菌对Cu胁迫下白三叶生长和Cu含量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of rhizobium on growth and Cu content in Trifolium repens under Cu stress
  • 作者:邹萌萌 ; 周卫红 ; 张静静 ; 陶春柳 ; 刘晓青 ; 李建龙
  • 英文作者:ZOU Mengmeng;ZHOU Weihong;ZHANG Jingjing;TAO Chunliu;LIU Xiaoqing;LI Jianlong;School of Life Sciences,Nanjing University;Suzhou Institute of Technology,Jiangsu University of Science and Technology;Suzhou Chien-Shiung Institute of Technology;Grass Industry College,Nanjing Agricultural University;
  • 关键词:根瘤菌 ; 白三叶 ; Cu胁迫 ; 生长 ; Cu含量 ; 植物修复
  • 英文关键词:rhizobium;;Trifolium repens Linn.;;Cu stress;;growth;;Cu content;;phytoremediation
  • 中文刊名:ZWZY
  • 英文刊名:Journal of Plant Resources and Environment
  • 机构:南京大学生命科学学院;江苏科技大学苏州理工学院;苏州健雄职业技术学院;南京农业大学草业学院;
  • 出版日期:2019-02-25
  • 出版单位:植物资源与环境学报
  • 年:2019
  • 期:v.28
  • 基金:国家重点研发计划项目(2018YFD0800201);; 国际APN全球变化项目(ARCP2015-03CMY-Li)
  • 语种:中文;
  • 页:ZWZY201901009
  • 页数:9
  • CN:01
  • ISSN:32-1339/S
  • 分类号:64-72
摘要
采用盆栽法研究了根瘤菌Rhizobium trifolii ACCC18017对Cu添加量为0、500、1 000和1 500 mg·kg~(-1)土壤中白三叶(Trifolium repens Linn.)的株高、主根长、地上部和地下部的鲜质量和干质量、叶片叶绿素含量以及地上部和地下部的Cu含量的影响。结果表明:Cu添加量为500 mg·kg~(-1)土壤中对照组(接种灭菌的2.7×10~9 CFU·mL~(-1)菌悬液)白三叶的株高、地上部和地下部的鲜质量及地上部干质量均显著(P<0.05)高于Cu添加量为0 mg·kg~(-1)的土壤;Cu添加量为1 000 mg·kg~(-1)土壤中对照组白三叶的株高、地上部鲜质量及地上部和地下部的干质量与Cu添加量为0 mg·kg~(-1)的土壤无显著差异;并且,Cu添加量为500、1 000和1 500 mg·kg~(-1)土壤中对照组白三叶的主根长和叶片叶绿素含量与Cu添加量为0 mg·kg~(-1)的土壤无显著差异。上述结果表明白三叶对一定程度的Cu污染土壤具有适应性。不同Cu添加量土壤中接菌组(先后接种2.7×10~9和2.3×10~9 CFU·mL~(-1)菌悬液)白三叶供试所有指标基本上均高于对照组;其中,Cu添加量为0、500和1 000 mg·kg~(-1)土壤中接菌组白三叶的株高及地上部和地下部的鲜质量和干质量基本上显著高于对照组。并且,Cu添加量为500和1 000 mg·kg~(-1)土壤中接菌组白三叶地上部和地下部的Cu含量显著高于对照组。本研究结果显示:根瘤菌R.trifolii ACCC18017能够促进白三叶生长及其对土壤中Cu的吸收,利于白三叶修复一定程度的Cu污染土壤。
        Effects of Rhizobium trifolii ACCC18017 on height, main root length, fresh and dry masses of above-and under-ground parts, chlorophyll content in leaf, and Cu content in above-and under-ground parts of Trifolium repens Linn. in soil with Cu additions of 0, 500, 1 000, and 1 500 mg·kg~(-1) were studied by using pot-culture method. The results show that height, fresh masses of above-and under-ground parts, and dry mass of above-ground part of T. repens in the control group(inoculated with sterilized 2.7×10~9 CFU·mL~(-1 ) suspension) in soil with Cu addition of 500 mg·kg~(-1 ) are significantly(P<0.05) higher than those of T. repens in soil with Cu addition of 0 mg·kg~(-1); height, fresh mass of above-ground part, and dry masses of above-and under-ground parts of T. repens in the control group in soil with Cu addition of 1 000 mg·kg~(-1) have no significant difference with those of T. repens in soil with Cu addition of 0 mg·kg~(-1); in addition, main root length and chlorophyll content in leaf of T. repens in the control group in soil with Cu additions of 500, 1 000, and 1 500 mg·kg~(-1) have no significant difference with those in T. repens in soil with Cu addition of 0 mg·kg~(-1). The above results indicate that T. repens is adaptable to Cu-contaminated soil with a certain degree. All tested indexes of T. repens in inoculation group(successively inoculated with 2.7×10~9 and 2.3×10~9 CFU·mL~(-1) suspensions) in soil with different Cu additions are basically higher than those of T. repens in the control group; in which, height and fresh and dry masses of above-and under-ground parts of T. repens in inoculation group are basically significantly higher than those of T. repens in the control group in soil with Cu additions of 0, 500, and 1 000 mg·kg~(-1). In addition, Cu content in above-and under-ground parts of T. repens in inoculation group is significantly higher than that of T. repens in the control group in soil with Cu additions of 500 and 1 000 mg·kg~(-1). It is suggested that R. trifolii ACCC18017 can promote growth of T. repens and its absorption of Cu in soil, which is beneficial to remediation of Cu-contaminated soil with a certain degree.
引文
[1] 韩玉林. Pb-Cu复合胁迫对马蔺幼苗生长和生理指标的影响[J]. 植物资源与环境学报, 2010, 19(4): 24-30.
    [2] LOLAND J ?, SINGH B R. Copper contamination of soil and vegetation in coffee orchards after long-term use of Cu fungicides[J]. Nutrient Cycling in Agroecosystems, 2004, 69(3): 203-211.
    [3] WILCKE W, KRETZSCHMAR S, BUNDT M, et al. Depth distribution of aluminum and heavy metals in soils of Costa Rican coffee cultivation areas[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(5): 499-502.
    [4] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3): 409-417.
    [5] 孙雨亮, 黄苏珍, 原海燕. Cu污染土壤中溪荪和花菖蒲的生长状况及对Cu的积累及转运能力[J]. 植物资源与环境学报, 2011, 20(2): 49-55.
    [6] 安婧, 宫晓双, 魏树和. 重金属污染土壤超积累植物修复关键技术的发展[J]. 生态学杂志, 2015, 34(11): 3261-3270.
    [7] 张杏锋, 夏汉平, 李志安, 等. 牧草对重金属污染土壤的植物修复综述[J]. 生态学杂志, 2009, 28(8): 1640-1646.
    [8] 王友保, 张莉, 刘登义, 等. 铜陵铜尾矿库植被状况分析[J]. 生态学杂志, 2004, 23(1): 135-139.
    [9] 尹春芹, 孙清斌, 刘先利, 等. 典型草坪植物对铜的积累及其耐性差异研究[J]. 湖北理工学院学报, 2018, 34(2): 8-13.
    [10] 黄兴如, 张彩文, 张晓霞. 根瘤菌在污染土壤修复中的地位和作用[J]. 中国土壤与肥料, 2016(5): 5-10.
    [11] ZAIDI A, KHAN M S, AAMIL M. Bioassociative effect of rhizospheric microorganisms on growth, yield, and nutrient uptake of greengram[J]. Journal of Plant Nutrition, 2004, 27(4): 601-612.
    [12] FAN L M, MA Z Q, LIANG J Q, et al. Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings[J]. Bioresource Technology, 2011, 102(2): 703-709.
    [13] 张宪政. 植物叶绿素含量测定: 丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3): 26-28.
    [14] 张国军, 邱栋梁, 刘星辉. Cu对植物毒害研究进展[J]. 福建农林大学学报(自然科学版), 2004, 33(3): 289-294.
    [15] SCHMIDT W, BARTELS M, TITTEL J, et al. Physiological effects of copper on iron acquisition processes in Plantago[J]. New Phytologist, 1997, 135(4): 659-666.
    [16] YRUELA I. Copper in plants[J]. Brazilian Journal of Plant Physiology, 2005, 17(1): 145-156.
    [17] WANI P A, KHAN M S, ZAIDI A. Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(1): 33-42.
    [18] ABRIL A, ZURDO-PI?EIRO J L, PEIX A, et al. Solubilization of phosphate by a strain of Rhizobium leguminosarum bv. trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina)[M]//VELáZQUEZ E, RODRIGUEZ-BARRUECO C. Developments in Plant and Soil Sciences: First International Meeting on Microbial Phosphate Solubilization. Salamanca: Springer, 2007, 102: 135-138.
    [19] 韦革宏, 马占强. 根瘤菌-豆科植物共生体系在重金属污染环境修复中的地位、应用及潜力[J]. 微生物学报, 2010, 50(11): 1421-1430.
    [20] 李文学, 陈同斌, 刘颖茹. 刈割对蜈蚣草的砷吸收和植物修复效率的影响[J]. 生态学报, 2004, 125(3): 538-542.
    [21] SCHüTZENDüBEL A, SCHWANZ P, TEICHMANN T, et al. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots[J]. Plant Physiology, 2001, 127(3): 887-898.
    [22] 许桂芳, 张朝阳. 高温胁迫对4种珍珠菜属植物抗性生理生化指标的影响[J]. 中国生态农业学报, 2009, 17(3): 565-569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700