用户名: 密码: 验证码:
超声速气流中复杂冷却结构的传热分析方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Analysis Method on Complex Regenerative Cooling Structure in Supersonic Flows
  • 作者:黄日鑫 ; 谭永华 ; 刘军彦 ; 杨宝娥
  • 英文作者:HUANG Ri-xin;TAN Yong-hua;LIU Jun-yan;YANG Bao-e;Xi'an Aerospace Propulsion Institute;Academy of Aerospace Propulsion Technology;
  • 关键词:超声速气流 ; 再生冷却 ; 有限元方法 ; 参考焓法 ; 热分析
  • 英文关键词:Supersonic flows;;Regenerative cooling;;Finite element methods;;Reference enthalpy method;;Thermal analysis
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西安航天动力研究所;航天推进技术研究院;
  • 出版日期:2018-12-20 11:45
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.260
  • 语种:中文;
  • 页:TJJS201902017
  • 页数:6
  • CN:02
  • ISSN:11-1813/V
  • 分类号:142-147
摘要
针对应用于高超声速吸气式发动机中的复杂再生冷却结构,为了更好地对其进行传热性能评估,在充分借鉴液体火箭发动机传热分析方法的基础上,集成多种成熟高效的技术,建立了一种解耦的传热分析方法。该方法首先借助计算流体力学技术确定结构件工作的热环境,提取必要的参数后依据半经验关系式确定气侧的换热边界条件;然后,通过将冷却流动假设成一维流动,根据换热准则确定液侧的换热边界;最后,对冷却结构进行有限单元离散,计算传热过程,获得温度场特征。该方法将换热与导热过程解耦,降低了研究问题的复杂性,适用于复杂构型的热防护设计。通过后掠尖缘再生冷却支板的热防护试验,证实了传热分析方法的可靠性,且显示算法对本例的预测误差约在8%左右。
        In order to make a better thermal analysis of complex regenerative cooling structure in air breathing engines for hypersonic flight,a decoupled method integrated mature and efficient techniques for supersonic flows is developed,based on the thoughts from the area of traditional liquid rocket engines. The first step of the method is to determine the parameters on the convective heat exchange boundaries to the gas side,using semi-experience relations with the necessary main flow environment extracted from calculations performed by CFD technology. Then the second step turns to the boundaries to the liquid side,according to proper heat exchange rules by assuming that the flow in the cooling channels is only one dimensional. In the last step,the finite element method is used to discrete the solid domain,and the heat conduction is performed to obtain the temperature characteristics. This method decouples the flow path of heat exchange and conduction,and simplifies the practical problem; meanwhile,it is adapt to structures of complex geometries. The method is validated by the experiment of thermal protection for a swept blade-like regenerative cooling strut. The results indicate a reasonable reliability of this method and the predicted error is about 8%.
引文
[1]周立新,葛李虎.高深宽比冷却通道的流动与传热数值分析[J].火箭推进,1996,(4):38-55.
    [2]张锋,仲伟聪.膜冷却推力室传热计算研究[J].火箭推进,2009,35(4):34-37.
    [3]张忠利,郭斌.推力室的喷管及套筒的气动传热研究[J].火箭推进,1999,(6):18-31.
    [4] Lorenzo Valdevit,Natasha Vermaak,Frank W Zok,et al. Design of Actively Cooled Pannels for Scramjets[R]. AIAA 2006-8069.
    [5]蒋劲,张若凌,乐嘉陵.超燃冲压发动机再生冷却热结构设计的计算工具[J].实验流体力学,2006,20(3):1-7.
    [6]蒋劲,张若凌.再生冷却超燃冲压发动机传热计算分析与试验[J].推进技术,2012,33(3):443-449.(JIANG Jin,ZHANG Ruo-ling. Thermal Analysis and Experiment Validation of Regenerative Cooling Scramjet[J]. Journal of Propulsion Technology,2012,33(3):443-449.)
    [7] Dufour E,Bouchez M. Semi-Empirical and CFD Analysis of Actively Cooled Dual-Mode Ramjets[R]. AIAA2002-5126.
    [8] Bouchez M,Dufour E,Darian E. Semi-Empirical and CFD Analysis of Actively Cooled Dual-Mode Ramjets:2006 Status[R]. AIAA 2006-8073.
    [9] Zhang R L,Jiang J,Le J L. Calculational Tools of Thermal Exchange in Regeneratively Cooled Scramjet[R]. AJCPP 2006-22224.
    [10] Zhang R L,Le J L,Liu W X,et al. The Study on Coolant Flow and Heat Transfer along the Cooling Channels in Scramjet[R]. ISABE 2011-1518.
    [11] Zhong F, Brown G L. A 3-Dimensional, Coupled,DNS,Heat Transfer Model and Solution for Multi-Hole Cooling[J]. International Journal of Heat and Mass Transfer,2007,50(7-8):1328-1343.
    [12]仲峰泉,范学军,俞刚.带主动冷却的超声速燃烧室传热分析[J].推进技术,2009,30(5):513-532.(ZHONG Feng-quan,FAN Xue-jun,YU Gang. Heat Transfer Analysis for Actively Cooled Supersonic Combustor[J]. Journal of Propulsion Technology,2009,30(5):513-532.)
    [13] Zhong F Q,Fan X J,Yu G,et al. Heat Transfer of Aviation Kerosene at Supercritical Conditions[J]. Journal of Thermophysics and Heat Transfer,2009,23(3):543-550.
    [14]陈同银,仲峰泉,王晶,等.超声速燃烧辅助喷油支板的主动冷却结构设计研究[C].无锡:第三届高超声速科技学术会议,2010.
    [15]陆阳,王新竹,李龙,等.再生主动冷却结构耦合传热分析方法研究[C].桂林:高超声速专题研讨会暨第五届全国高超声速科学技术会议,2012.
    [16]王新竹,张泰昌,陆阳,等.主动冷却燃烧室燃烧与传热耦合过程迭代分析设计方法[J].推进技术,2014,35(2):213-219.(WANG Xin-zhu,ZHANG Tai-chang,LU Yang,et al. An Iterative Analysis and Design Method for Study of Coupling Processes of Combustion and Heat Transfer in Actively-Cooled Scramjet Combustor[J]. Journal of Propulsion Technology,2014,35(2):213-219.)
    [17]杨样,张磊,张若凌,等.超燃冲压发动机燃烧室主动冷却设计研究[J].推进技术,2014,35(2):208-212.(YANG Yang,ZHANG Lei,ZHANG Ruoling,et al. Design Research of an Actively Fuel-Cooled Scramjet Combustor[J]. Journal of Propulsion Technology,2014,35(2):208-212.)
    [18]白瑜光,张玉光,原志超,等.发动机燃烧室主动冷却管道的热-力耦合分析[J].推进技术,2013,34(12):1621-1627.(BAI Yu-guang,ZHANG Yuguang,YUAN Zhi-chao,et al. Analysis for Thermal and Mechanical Coupling in Active Cooling Channels for Engine Combustor[J]. Journal of Propulsion Technology,2013,34(12):1621-1627.)
    [19]高效伟,刘健,彭海峰.集成单元边界元法及其在主动冷却热防护系统分析中的应用[J].力学学报,2016,(4):994-1003.
    [20]张明哲,艾青,刘华.超声速燃烧室再生冷却结构对传热的影响分析[J].节能技术,2014,32(4):308-323.
    [21]程荣军,程玉民.带源参数的二维热传导反问题的无网格方法[J].力学学报,2007,39(6):843-847.
    [22]宋宏伟,纪科星,黄晨光,等.主动冷却通道热流固耦合三维数值计算及构型应力分析[C].无锡:第三届高超声速科技学术会议,2010.
    [23]金峰,刘升君,吉洪湖.高超声速冲压发动机壁面的再生冷却数值模拟[C].无锡:第三届高超声速科技学术会议,2010.
    [24] Heiser W H,Pratt D T. Hypersonic Airbreathing Propulsion[M]. USA:AIAA Inc,2002.
    [25] Eckert E R G. Engineering Relations for Friction and Heat Transfer to Surface in High Velocity Flow[J]. Journal of the Aeronautical Sciences,1955,22(8):585-587.
    [26]王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700