用户名: 密码: 验证码:
钢筋混凝土框架结构基于时变的抗震性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on time-dependent seismic performance of reinforced concrete moment-resisting frame structures
  • 作者:刘小娟 ; 蒋欢军
  • 英文作者:LIU Xiaojuan;JIANG Huanjun;College of Civil Engineering, Huaqiao University;Key Laboratory for Structure Engineering and Disaster Prevention of Fujian Province, Huaqiao University;State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University;
  • 关键词:锈蚀钢筋混凝土框架 ; 多尺度建模方法 ; 静力推覆分析 ; 弹塑性时程分析 ; 抗震性能
  • 英文关键词:corroded reinforced concrete frame;;multi-scale modeling technique;;pushover analysis;;time-history analysis;;seismic performance
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:华侨大学土木工程学院;华侨大学福建省结构工程与防灾重点实验室;同济大学土木工程防灾国家重点实验室;
  • 出版日期:2018-12-17 17:02
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划(2017YFC1500701);; 福建省自然科学基金项目(2018J01073);; 福建省中青年教师教育科研项目(JAT170047)
  • 语种:中文;
  • 页:JZJB201903014
  • 页数:8
  • CN:03
  • ISSN:11-1931/TU
  • 分类号:138-145
摘要
钢筋混凝土结构在使用过程中由于钢筋锈蚀抗震性能退化。为了研究钢筋混凝土框架结构在正常使用环境下随使用时间的增加其抗震性能的退化规律,采用通用有限元分析软件ABAQUS对锈蚀钢筋混凝土框架进行多尺度建模以提高计算精度并保证计算效率。基于锈蚀钢筋混凝土构件及单榀框架的试验数据,验证了多尺度建模方法的正确性。采用多尺度模型对4层钢筋混凝土框架结构进行了静力推覆分析及弹塑性时程分析,对比不同使用时间的钢筋混凝土框架结构的地震反应和损伤情况。结果表明:当使用时间为25 a时,结构的抗震性能与新建结构接近;当使用时间超过50 a时,随着使用时间的增加,结构的承载能力及刚度退化明显,在地震作用下的位移响应逐渐增大,地震损伤范围不断扩大;相比新建结构,当使用时间为50、75 a和100 a时,结构的抗侧承载力分别降低了6.2%、14.1%及18.1%,罕遇地震作用下的最大层间位移角分别增大了9.2%、19.8%及25.1%。
        Due to corrosion of steel reinforcement, the seismic performance of reinforced concrete(RC) structures degrades during service time. A numerical analysis was conducted to investigate the time-dependent degradation law of seismic performance of RC structures in normal environment. In order to improve the computation efficiency and guarantee the calculation accuracy, multi-scale modeling technique with the aid of general finite element analysis software ABAQUS was adopted for corroded reinforced concrete(RC) moment-resisting frame structures. Based on the test data of corroded RC components and single-bay RC frames, the multi-scale modeling technique was validated. Nonlinear pushover analysis and time-history analysis were carried out on multi-scale models of four-story RC moment-resisting frames to investigate the seismic response and damage distribution of RC frames with different service time. It is indicated that for the RC frames with a service time of 25 a, the seismic performance is similar to that of the new structure. For RC frames with service time longer than 50 a, an increase of service time leads to significant degradation of the loading resistance and stiffness, and the displacement response and damage extent under seismic excitation increase gradually. Comparing with a new RC frame structure, the structures with service times of 50 a, 75 a and 100 a exhibit decreases in the lateral loading-carrying capacity by 6.2%, 14.1% and 18.1%, respectively. The maximum inter-story drift ratio under rare earthquakes is increased by 9.2%, 19.8% and 25.1%, respectively.
引文
[1] SIMON J, BRACCI J M, GARDONI P. Seismic response and fragility of deteriorated reinforced concrete bridges[J]. Journal of Structural Engineering, 2010, 136(10): 1273-1281.
    [2] CHOE D E, GARDONI P, ROSOWSKY D, et al. Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion[J]. Reliability Engineering & System Safety, 2008, 93(3): 383-393.
    [3] 郑山锁, 杨威, 赵彦堂, 等. 人工气候环境下锈蚀RC弯剪破坏框架梁抗震性能试验研究[J]. 土木工程学报, 2015, 48(11): 27-35. (ZHENG Shansuo, YANG Wei, ZHAO Yantang, et al. Experimental research on the seismic behaviors of corroded RC frame beams failed in flexural-shear mode under the artificial climate[J]. China Civil Engineering Journal, 2015, 48(11): 27-35. (in Chinese))
    [4] OU Y C, TSAI L L, CHEN H H. Cyclic performance of large-scale corroded reinforced concrete beams[J]. Earthquake Engineering & Structural Dynamic, 2012, 41: 593- 604.
    [5] OU Y C, CHEN H H. Cyclic behaviour of reinforced concrete beams with corroded transverse steel reinforcement[J]. Journal of Structural Engineering, 2014, 140: 04014050.
    [6] OU Y C, NGUYEN N D. Influences of location of reinforcement corrosion on seismic performance of corroded reinforced concrete beams[J]. Engineering Structures, 2016, 126: 210-223.
    [7] 贡金鑫, 仲伟秋, 赵国藩. 受腐蚀钢筋混凝土偏心受压构件低周反复性能的试验研究[J]. 建筑结构学报, 2004, 25(5): 92-97. (GONG Jinxin, ZHONG Weiqiu, ZHAO Guofan. Experimental study on low-cycle behavior of corroded reinforced concrete member under eccentric compression[J]. Journal of Building Structures, 2004, 25(5): 92-97. (in Chinese))
    [8] MEDA A, MOSTOSI S, RINALDI Z, et al. Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns[J]. Engineering Structures, 2014, 76: 112-123.
    [9] GOKSU C, ILKI A. Seismic behavior of reinforced concrete columns with corroded deformed reinforcing bars[J]. ACI Structural Journal, 2016, 113(5): 1053-1064.
    [10] KALLIAS A N, RAFIG M I. Finite element investigation of the structural response of corroded RC beams[J]. Engineering Structures, 2010, 32(9): 2984-2994.
    [11] CORONELLI D, GAMBAROVA P. Structural assessment of corroded reinforced concrete beams: modeling guidelines[J]. Journal of Structural Engineering, 2004, 130(8): 1214-1224.
    [12] YUAN W, GUO A, LI H. Seismic failure mode of coastal bridge piers considering the effects of corrosion-induced damage[J]. Soil Dynamics and Earthquake Engineering, 2017, 93: 135-146.
    [13] GHOSH J, PADGETT J E. Aging considerations in the development of time-dependent seismic fragility curves[J]. Journal of Structural Engineering, 2010, 136(12): 1497-1511.
    [14] YALCINER H, SENSOY S, EREN O. Time-dependent seismic performance assessment of a single-degree-of-freedom frame subject to corrosion[J]. Engineering Failure Analysis, 2012, 19: 109-122.
    [15] 蒋欢军, 刘小娟. 锈蚀钢筋混凝土柱基于变形的性能指标研究[J]. 建筑结构学报, 2015, 36(7): 115-123. (JIANG Huanjun, LIU Xiaojuan. Study on deformation-based performance index of corroded reinforced concrete column[J]. Journal of Building Structures, 2015, 36(7): 115-123. (in Chinese))
    [16] 袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋混凝土梁的结构性能退化模型[J]. 土木工程学报, 2001, 34(3): 47-52. (YUAN Yingshu, JIA Fuping, CAI Yue. The structural behavior deterioration model for corroded reinforced concrete beams[J]. China Civil Engineering Journal, 2001, 34(3): 47-52. (in Chinese))
    [17] 刘小娟, 蒋欢军. 锈蚀钢筋混凝土悬臂梁变形性能有限元分析[J]. 建筑结构学报, 2015, 36(增刊2): 309-317. (LIU Xiaojuan, JIANG Huanjun. Finite element analysis on deformation behavior of corroded reinforced concrete cantilever beams[J]. Journal of Building Structures, 2015, 36(Suppl.2): 309-317. (in Chinese))
    [18] Hibbitt, Karlsson & Sorensen Inc. ABAQUS/Standard users’ manual[M]. Pawtucket, RI: Hibbitt, Karlsson & Sorensen Inc., 2012.
    [19] 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010. (Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press,2010. (in Chinese))
    [20] 牛荻涛, 陈新孝, 王学民. 锈蚀钢筋混凝土压弯构件抗震性能试验研究[J]. 建筑结构, 2004, 34(10): 36- 45.
    [21] BAE S, BAYRAK O. Plastic hinge length of reinforce concrete columns[J]. ACI Structural Journal, 2008, 105(3): 290-300.
    [22] LIU X J, JIANG H J, HE L S. Experimental investigation on seismic performance of corroded reinforced concrete moment-resisting frames[J]. Engineering Structures, 2017, 153: 639- 652.
    [23] 混凝土结构耐久性评定标准: CECS 220:2007[S]. 北京: 中国建筑工业出版社, 2007. (Standard for durability assessment of concrete structures: CECS 220: 2007[J]. Beijing: China Architecture & Building Press,2007.(in Chinese))
    [24] 建筑抗震设计规程: DGJ 08-9—2013[S]. 上海: 上海市建筑建材业市场管理总站, 2013. (Code for seismic design of buildings: DGJ 08-9—2013[S]. Shanghai: Shanghai Station of the Building Materials Industry Market Management, 2013.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700