用户名: 密码: 验证码:
纳秒脉冲火花放电高效转化甲烷的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Experimental Investigation of Nanosecond Pulsed Spark Discharge for High-Efficient Methane Conversion
  • 作者:孙昊 ; 张帅 ; 韩伟 ; 高远 ; 王瑞雪 ; 邵涛
  • 英文作者:Sun Hao;Zhang Shuai;Han Wei;Gao Yuan;Wang Ruixue;Shao Tao;Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Research Institute of Petroleum Processing SINOPEC;
  • 关键词:甲烷无氧转化 ; 纳秒脉冲放电 ; 发射光谱 ; 电子密度
  • 英文关键词:Methane non-oxidative conversion;;nanosecond pulsed spark discharge;;optical emission spectrum;;electron density
  • 中文刊名:DGJS
  • 英文刊名:Transactions of China Electrotechnical Society
  • 机构:中国科学院电力电子与电气驱动重点实验室中国科学院电工研究所;中国科学院大学;中国石化石油化工科学研究院;
  • 出版日期:2018-12-10 17:07
  • 出版单位:电工技术学报
  • 年:2019
  • 期:v.34
  • 基金:石油化工催化材料与反应工程国家重点实验室(中国石油化工股份有限公司石油化工科学研究院)开放基金课题(33600000-15-zc0607-0001);; 国家自然科学基金重点基金(51637010);青年基金(51507169);; 中英人才基金(51561130156);; 牛顿高级学者基金(NA140303)资助项目
  • 语种:中文;
  • 页:DGJS201904027
  • 页数:9
  • CN:04
  • ISSN:11-2188/TM
  • 分类号:248-256
摘要
火花放电是一种气体温度介于电弧放电和介质阻挡放电(DBD)之间的放电形式,具有设备简单、成本较低、转化率高和能量利用效率高等优点,是存在工业化潜力的甲烷高效转化技术。纳秒脉冲放电具有窄脉宽和上升沿,能够提高火花放电等离子体的不平衡程度,降低气体温度,进一步提高甲烷转化能量利用效率。本文研究纳秒脉冲甲烷放电的放电特性和产物分布,实验结果表明在输入能量为170kJ/mol的条件下,甲烷转化率可达60%、氢气选择性和产率分别为44.4%和26.6%、乙炔选择性和产率分别为28.8%和16.8%、总能量利用效率为33.9%、氢气能量利用效率为23%。获得了350~700nm的甲烷等离子发射光谱(OES),包括Ha、Hb、Hg 氢原子等Balmer谱线和CH、C~+、C_2等谱线,并利用Ha 的Stark展宽效应估算了电子密度约为1017cm-3量级。利用ICCD和单色仪获得了电子密度和CH、C_2发射光谱演变过程,实验结果表明电子密度随时间逐渐减少;C+几乎仅在外加脉冲时存在,CH仅在外加脉冲结束后出现,说明C+主要是由电子碰撞产生的,而C+在放电结束后与H发生反应生成CH,CH进一步复合生成C_2H2。
        The spark discharge, in which the gas temperature is between arc discharge and dielectric barrier discharge, has a potential for industrial methane conversion due to its high conversion rate, high conversion efficiency and low requirements. Nano-second pulse power source is able to enhance spark performance by short duration and rapid rising time, making plasma more efficient and colder. In this paper, an overall study of nanosecond pulsed spark discharge in methane has been conducted. The results show that the conversion rate of methane is 60%. The selectivity and yield of hydrogen is 44.4% and 26.6%, while those of acetylene are 28.8% and 16.8%, respectively. The total energy efficiency and hydrogen production efficiency are calculated as high as 33.9% and 23% at SEI of 170 kJ/mol. Optical emission spectrum(OES) at range of 350~700 nm has been recorded, in which H Balmer profiles(such as Ha, Hb, Hg), CH, C~+ and C_2 are detected. The electron density has been estimated about 1017 cm-3 by the Stark effect of Ha. The evolutions of Ha, CH and C_2 have been acquired by ICCD and monochromator. The electrons density decreases along with reaction time. C~+ shows up as long as pulses are exerted, while CH starts to be generated at the end of pulse, which indicates C_2 H2 comes from recombination of CH that derives from H and C+.
引文
[1]叶张煌,王安建,闫强,等.全球天然气格局分析和我国的发展战略[J].地球学报,2017,38(1):17-24.Ye Zhanghuang,Wang Anjian,Yan Qiang,et al.Global pattern analysis of natural gas and the development strategy in China[J].Power System Technology,2017,38(1):17-24.
    [2]王南,裴玲,雷丹凤,等.中国非常规天然气资源分布及开发现状[J].油气地质与采收率,2015,22(1):26-31.Wang Nan,Pei Ling,Lei Danfeng,et al.Analysis of unconventional gas resources distribution and development status in China[J].Petroleum Geology and Recovery Efficiency,2015,22(1):26-31.
    [3]顾佳明,黄晓媛,程党国,等.热等离子体裂解煤制乙炔反应器研究进展[J].化工进展,2013,32(增刊1):6-12.Gu Jiaming,Huang Xiaoyuan,Cheng Dangguo,et al.Process in thermal plasma reactor used for coal pyrolysis to acetylene[J].Chemical Industry and Engineering Progress,2013,32(S1):6-12.
    [4]苏宝根,房建威,闻光东,等.热等离子体裂解低碳烷烃制乙炔的研究进展[J].化学反应工程与工艺,2013,29(3):230-237.Su Baogen,Fang Jianwei,Wen Guangdong,et al.Development and process of pyrolysis of light alkanes to acetylene by thermal plasma[J].Chemical Reaction Engineering and Technology,2013,29(3):230-237.
    [5]戴栋,宁文军,邵涛.大气压低温等离子体的研究现状与发展趋势[J].电工技术学报,2017,32(20):1-9.Dai Dong,Ning Wenjun,Shao Tao.Review on the state of art and future trends of atmospheric pressure low temperature plasmas[J].Transactions of China Electrotechnical Society,2017,32(20):1-9.
    [6]Scapinello M,Delikonstantis E,Stefanidis G D.The panorama of plasma-assisted non-oxidative methane reforming[J].Chemical Engineering and Processing,2017,117(4):120-140.
    [7]陈琳.低温等离子体-催化选择性转化CH4研究进展[J].天然气化工:C1化学与化工,2011,36(2):70-74.Chen Lin.Advance in the research on methane selective conversion by cold plasma and catalysis[J].Natural Gas Chemical Industry,2011,36(2):70-74.
    [8]Tu Xin,Whitehead J C.Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge:understanding the synergistic effect at low temperature[J].Applied Catalysis B Environmental,2012,125(33):439-448.
    [9]张凯,王瑞雪,韩伟.等离子体重油加工技术研究进展[J].电工技术学报,2016,31(24):1-15.Zhang Kai,Wang Ruixue,Han Wei.Progress of heavy oil processing by plasma technology[J].Transactions of China Electrotechnical Society,2016,31(24):1-15.
    [10]杨宽辉,王保伟,许根慧.介质阻挡放电等离子体特性及其在化工中的应用[J].化工学报,2007,58(7):1609-1618.Yang Kuanhui,Wang Baowei,Xu Genhui.Dielectricbarrier discharge plasma characteristics and its application in chemical engineering[J].CIESC Journal,2007,58(7):1609-1618.
    [11]高远,张帅,刘峰,等.脉冲介质阻挡放电等离子体催化CH4直接转化[J].电工技术学报,2017,32(2):61-69.Gao Yuan,Zhang Shuai,Liu Feng,et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J].Transactions of China Electrotechnical Society,2017,32(2):61-69.
    [12]朱爱民,宫为民,张秀玲,等.脉冲电晕等离子体应用于CH4偶联的探索研究[J].天然气化工:C1化学与化工,1997,22(2):1-5.Zhu Aimin,Gong Weimin,Zhang Xiuling,et al.Investigation on pulsed corona induced plasma for coupling of methane[J].Natural Gas Chemical Industry C1 Chemistry and Technology,1997,22(2):1-5.
    [13]丁天英,刘景林,朱爱民.火花放电电极结构及其等离子体反应器[J].核聚变与等离子体物理,2014,34(3):282-288.Ding Tianying,Liu Jinglin,Zhu Aimin,et al.Electrode configuration and plasma reactor of spark discharge[J].Nuclear Fusion and Plasma Physics,2014,34(3):282-288.
    [14]张浩,朱凤森,李晓东,等.旋转滑动弧氩等离子体裂解甲烷制氢[J].燃料化学学报,2016,44(2):192-200.Zhang Hao,Zhu Fengshen,Li Xiaodong,et al.Rotating gliding arc plasma assisted hydrogen production from methane decomposition in Argon[J].Journal of Fuel Chemistry and Technology,2016,44(2):192-200.
    [15]张浩,朱凤森,李晓东,等.滑动弧放电等离子体重整甲烷关键技术分析[J].高电压技术,2015,41(9):2930-2942.Zhang Hao,Zhu Fengshen,Li Xiaodong,et al.Analysis of critical technology for gliding arc discharge plasma assisted methane reforming[J].High Voltage Engineering,2015,41(9):2930-2942.
    [16]Patino P,Perez Y,Caetano M.Coupling and reforming of methane by means of low pressure radio-frequency plasmas[J].Fuel,2005,84(16):2008-2014.
    [17]Heintze M,Magureanu M.Methane conversion into acetylene in a microwave plasma:optimization of the operating parameters[J].Journal of Applied Physics,2002,92(5):2276-2283.
    [18]Fincke J R,Anderson R P,Hyde T,et al.Plasma thermal conversion of methane to acetylene[J].Plasma Chemistry Plasma Processing,2002,22(1):107-138.
    [19]Xu Chao,Tu Xin.Plasma-assisted methane conversion in an atmospheric pressure dielectric barrier discharge reactor[J].Journal of Energy Chemistry,2013,22(3):420-425.
    [20]Kasinathan P,Park S,Choi W C,et al.Plasmaenhanced methane direct conversion over particlesize adjusted MOx/Al2O3(M=Ti and Mg)catalysts[J].Plasma Chemistry Plasma Processing,2014,34(6):1317-1330.
    [21]Zhu Aimin,Gong Weimin,Zhang Xiuling,et al.Coupling of methane under pulse corona plasma(I)-In the absence of oxygen[J].Science in China Series B,2000,43(2):208-214.
    [22]Yao Shuiliang,Suzuki E,Meng N,et al.A highefficiency reactor for the pulsed plasma conversion of methane[J].Plasma Chemistry Plasma Processing,2002,22(2):225-237.
    [23]Rueangjitt N,Sreethawong T,Chavadej S.Nonoxidative reforming of methane in a mini-gliding arc discharge reactor:effects of feed methane concentration,feed flow rate,electrode gap distance,residence time,and catalyst distance[J].Plasma Chemistry Plasma Processing,2011,31(2):517-534.
    [24]Hsieh L T,Lee W J,Chen C Y,et al.Convertingmethane by using an RF plasma reactor[J].Plasma Chemistry and Plasma Processing,1998,18(2):215-229.
    [25]李和平,于达仁,孙文廷,等.大气压放电等离子体研究进展综述[J].高电压技术,2016,42(12):3697-3727.Li Heping,Yu Daren,Sun Wenting,et al.State of the art of atmospheric discharge plasmas[J].High Voltage Engineering,2016,42(12):3697-3727.
    [26]邵涛,章程,王瑞雪,等.大气压脉冲气体放电与等离子体应用[J].高电压技术,2016,42(3):685-705.Shao Tao,Zhang Cheng,Wang Ruixue,et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J].High Voltage Engineering,2016,42(3):685-705.
    [27]荣命哲,刘定新,李美,等.非平衡态等离子体的仿真研究现状与新进展[J].电工技术学报,2014,29(6):271-282.Rong Minzhe,Liu Dingxin,Li Mei,et al.Research status and new progress on the numerical simulation of non-equilibrium plasma[J].Transactions of China Electrotechnical Society,2014,29(6):271-282.
    [28]Lotfalipour R,Ghorbanzadeh A M,Mahdian A.Methane conversion by repetitive nanosecond pulsed plasma[J].Journal of Physics D:Applied Physics,2014,47(36):5201-5217.
    [29]Kado S,Urasaki K,Sekine Y,et al.Reaction mechanism of methane activation using nonequilibrium pulsed discharge at room temperature[J].Fuel,2003,82(18):2291-2297.
    [30]Kado S,Sekine Y,Nozaki T,et al.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catalysis Today,2004,89(1):47-55.
    [31]何方方,李娟,印永祥,等.冷等离子体裂解甲烷制C2烃动力学分析及模拟[J].天然气化工,2003,28(6):52-57.He Fangfang,Li Juan,Yin Yongxiang,et al.Kinetics analysis and simulation involved in cracking and conversion of methane to C2 hydrocarbons in cold plasma[J].Natural Gas Chemical Industry,2003,28(6):52-57.
    [32]王望达,徐勇,张家良,等.常压辉光等离子体催化CH4转化制C2烃在线诊断研究[J].光谱学与光谱分析,2010,30(10):2812-2815.Wang Wangda,Xu Yong,Zhang Jialiang,et al.Online diagnosis of the conversion of methane to C2hydrocarbons under glow discharge plasma at atmospheric pressure[J].Spectroscopy and Spectral Analysis,2010,30(10):2812-2815.
    [33]Nikiforov A Y,Chen L,Gonzalez M A,et al.Electron density measurement in atmospheric pressure plasma jets:Stark broadening of hydrogenated and nonhydrogenated lines[J].Plasma Sources Science and Technology,2015,24(3):034001.
    [34]Helbig V,Nick K P.Investigation of the Stark broadening of Balmer beta[J].Journal of Physics B:Atomic and Molecular Physics,1981,14(19):3573.
    [35]Mills R L,Ray P C,Dhandapani B,et al.Comparison of excessive Balmer alpha line broadening of glow discharge and microwave hydrogen plasmas with certain catalysts[J].Journal of Applied Physics,2002,92(12):7008-7021.
    [36]M Rio J,Viktor M,Karol H,et al.Measurement of the electron density in transient spark discharge[J].Plasma Sources Science and Technology,2014,23(6):065016.
    [37]Xiong Qing,Nikiforov A Y,Lu Xinpei,et al.High-speed dispersed photographing of an open-air argon plasma plume by a grating-ICCD camera system[J].Journal of Physics D:Applied Physics,2010,43(41):415201.
    [38]Griem H R,Borr W L.Spectral line broadening by plasmas[J].IEEE Transactions on Plasma Science,1975,3(4):227.
    [39]Gigosos M A,Gonz Má,Carde V N.Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2003,58(8):1489-1504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700