用户名: 密码: 验证码:
铸造Be-37.6Al-0.4Sc合金的力学性能及断裂行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical Properties and Fracture Behaviors of Cast Be-37.6Al-0.4Sc Alloy
  • 作者:余良波 ; 王晶 ; 王震宏 ; 苏斌 ; 曲凤盛 ; 李瑞文 ; 孟宪东 ; 赖新春
  • 英文作者:Yu Liangbo;Wang Jing;Wang Zhenhong;Su Bin;Qu Fengsheng;Li Ruiwen;Meng XiANDong;Lai Xinchun;Institute of Materials,China Academy of Engineering Physics;
  • 关键词:铍铝合金 ; 第二相 ; 纳米压痕 ; 断口形貌
  • 英文关键词:Be-Al Alloy;;Secondary Phase;;Nano-indentation;;Fractography
  • 中文刊名:TZZZ
  • 英文刊名:Special Casting & Nonferrous Alloys
  • 机构:中国工程物理研究院材料研究所;
  • 出版日期:2019-02-20
  • 出版单位:特种铸造及有色合金
  • 年:2019
  • 期:v.39;No.311
  • 基金:国家自然科学基金资助项目(51504266)
  • 语种:中文;
  • 页:TZZZ201902001
  • 页数:6
  • CN:02
  • ISSN:42-1148/TG
  • 分类号:4-9
摘要
采用纳米压痕和拉伸试验对铸造Be-37.6Al-0.4Sc合金的力学性能进行表征,结合微观组织及断口形貌,分析研究Sc合金化对铸造铍铝合金组织性能和断裂行为的影响。结果发现,Sc合金化使粗大的铍柱状树枝晶转变为尺寸均匀细小的等轴晶,提高合金强度但降低了塑性。含Sc第二相具有最大的弹性模量,为321.48 MPa,硬度为9.83GPa,最小塑性指数为0.803。铍/铝相界面处的第二相不是基体相的裂纹源,铍晶粒内多面形第二相诱发铍晶粒微裂纹的形成。合金拉伸断裂方式表现为铍相脆性解理断裂和铝相延性韧窝断裂的混合断裂模式。
        The mechanical properties of cast Be-37.6Al-0.4Sc alloy were characterized by nano-indentation and tensile tests,and effects of Sc-alloying on the microstructure and fracture behaviors of the alloy were investigated via tensile fractography and optical metallography.With Sc alloying,the microstructure of the Be-Al alloy is converted from coarse columnar dendritics to uniform and fine equiaxed grain,which are responsible for improving strength and decreasing plasticity.The Sc-containing secondary phases presents the highest elastic modulus of 321.48 MPa,the highest hardness of 9.83 GPa and the lowest plasticity index of 0.803 compared with those of the matrix alloy.The secondary phases locating at the Be/Al interfaces is not acted as pre-existing micro-crack sources during the deformation,whereas the highly-faceted secondary phases within Be grains induced the formation of micro-cracks and resulted in the decrease of elongation.The failure mode of Be-37.6Al-0.4Sc alloy are characterized by brittle cleavage failure of Be regions and ductile dimple failure of Al regions compared with the Be-Al alloy.
引文
[1]CONTRERAS F,TRILLO E A,MURR L E.Friction-stir welding of a beryllium-aluminum powder metallurgy alloy[J].Journal of Materials Science,2002,37(1):89-99.
    [2]NARDONE V C,GAROSSHEN T J.Evaluation of the tensile and fatigue behaviour of ingot metallurgy beryllium/aluminium alloys[J].Journal of Materials Science,1997,32(15):3 975-3 985.
    [3]MOLCHANOVA L V,ILYUSHINB V N.Alloying of aluminumberyllium alloys[J].Russian Metallurgy(Metally),2013(1):71-73.
    [4]YU L B,WANG J,QU F S,et al.Effects of scandium addition on microstructure,mechanical and thermal properties of cast Be-Al alloy[J].Journal of Alloys and Compounds,2018,737:655-664.
    [5]YU L B,WANG J,WANG Z H,et al.Sc and Sc-Zr effects on microstructure and mechanical properties of Be-Al alloy[J].Materials Science and Technology,2018,34(4):480-486.
    [6]OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1 564-1 583.
    [7]WHEELER D W,MORRIS S T.Micro-mechanical characterisation of uranium[J].Journal of Nuclear Materials,2009,385(1):122-125.
    [8]BRISCOEY B J,FIORI L,PELILLO E.Nano-indentation of polymeric surfaces[J].Journal of Physics,1998,D31(19):2 395-2 405.
    [9]MOLCHANOVA L V.Effect of scandium on the phase composition and mechanical properties of ABM alloys[J].Russian Metallurgy(Metally),2010(9):815-818.
    [10]YU L B,WANG J,MENG X D,et al.Microstructure and mechanical properties of Be-Al and Be-Al-Sc alloys with various solidification rates[J].Materials Research Express,2018,5(6):066519.
    [11]刘孝宁,马世光.铍铝合金的研究与应用[J].稀有金属,2003,27(1):62-65.
    [12]FISCHER-CRIPPS A C.Nanoindentation[M].New York:Springer,2011.
    [13]ALBRECHT H J,HANNACH T,HASE A,et al.Nanoindentation:a suitable tool to determine local mechanical properties in microelectronic packages and materials[J].Archive of Applied Mechanics,2005,74(11):728-738.
    [14]WANG Y,YANG J,BAO Y P.Characteristics of BN precipitation and growth during solidification of BN free-machining steel[J].Metallurgical and Materials Transactions,2014,B45(6):2 269-2 278.
    [15]王战宏,王莉,吴艳青,等.铍铝合金室温拉伸及原位疲劳失效分析[J].粉末冶金技术,2007,25(3):163-166.
    [16]焦旗,马玲,冯婷,等.银、钴、锗对铍铝合金组织及性能的影响[J].特种铸造及有色合金,2010,30(10):973-976.
    [17]马玲,冯婷,焦旗,等.粉末冶金铍铝合金的微屈服行为及其机理[J].稀有金属材料与工程,2012,41(10):1 795-1 798.
    [18]马玲,赵双群,王战宏,等.粉末冶金铍铝合金的显微组织和力学性能[J].兵器材料科学与工程,2006,29(6):39-42.
    [19]YANG Z F,LU W J,QIN J N,et al.Microstructure and tensile properties of in situ synthesized(TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperature[J].Materials Science and Engineering,2006,A425(1):185-191.
    [20]SHE J,ZHAN Y Z,LI C L.Novel in situ synthesized zirconium matrix composites reinforced with ZrC particles[J].Materials Science and Engineering,2010,A527(23):6 454-6 458.
    [21]HALPIN J C.Stiffness and expansion estimates for oriented short fiber composites[J].Journal of Composite Materials,1969,3(4):732-734.
    [22]HALPIN J C,THOMAS R L.Ribbon reinforcement of composites[J].Journal of Composite Materials,1968,2(4):488-497.
    [23]许德美,李峰,王东新,等.组织缺陷对金属铍室温断裂行为的影响规律研究[J].稀有金属,2010,34(6):844-849.
    [24]LAROSE J,LEWANDOWSKI J J.Pressure effects on flow and fracture of Be-Al alloys[J].Metallurgical and Materials Transactions,2002,A33(11):3 555-3 564.
    [25]KADKHODAPOUR J,BUTZ A,RAD S Z.Mechanisms of void formation during tensile testing in a commercial,dual-phase steel[J].Acta Materialia,2011,59(7):2 575-2 588.
    [26]VENKATESWARLU K,PATHAK L C,RAY A K,et al.Microstructure,tensile strength and wear behaviour of Al-Sc alloy[J].Materials Science and Engineering,2004,A383(2):374-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700