用户名: 密码: 验证码:
碳铁复合低碳炼铁炉料制备与应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on preparation and application for a new burden of iron-carbon agglomerate for low carbon blast furnace ironmaking
  • 作者:王宏涛 ; 储满生 ; 鲍继伟 ; 韩冬 ; 曹来更 ; 赵伟
  • 英文作者:WANG Hong-tao;CHU Man-sheng;BAO Ji-wei;HAN Dong;CAO Lai-geng;ZHAO Wei;School of Metallurgy, Northeastern University;
  • 关键词:碳铁复合炉料 ; 制备与应用 ; 新技术 ; 低碳高炉炼铁 ; 节能减排
  • 英文关键词:iron-carbon agglomerate;;preparation and application;;new technology;;low carbon blast furnace ironmaking;;energy conservation and emission reduction
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:东北大学冶金学院;
  • 出版日期:2019-02-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 基金:NSFC-辽宁联合基金资助项目(U1808212)
  • 语种:中文;
  • 页:IRON201902003
  • 页数:9
  • CN:02
  • ISSN:11-2133/TF
  • 分类号:18-26
摘要
在未来相当长一段时期内,高炉-转炉流程仍是钢铁生产的主导流程。高炉炼铁是钢铁工业节能减排的关键环节。碳铁复合炉料新技术是当前最可能实现的低碳高炉炼铁技术。阐明了高炉使用碳铁复合炉料低碳冶炼的原理,系统研究了碳铁复合炉料的制备、冶金性能优化、对含铁炉料还原过程的影响以及对高炉综合炉料熔滴性能的影响及其机理,形成了完整的竖炉法碳铁复合炉料制备和应用技术。结果表明,碳铁复合炉料制备工艺优化条件为15%铁矿B、55%烟煤A、10%烟煤B、20%无烟煤C,压块温度为300℃,1 000℃炭化4 h,此条件下碳铁复合炉料抗压强度达4 970 N,反应性为61.08%,反应后强度达51.23%;混装10%碳铁复合炉料,1 100℃还原时球团还原率提高7.69%;随着碳铁复合炉料添加量的增加,综合炉料软化区间从206.3℃增加到218.9℃,熔化区间从171.1℃降低到124.8℃,滴落率先升高后降低,透气性改善,综合炉料中碳铁复合炉料添加量不宜超过焦炭的30%。
        Blast furnace(BF)-converter process is dominant for the steel production for a long time in the near future. BF ironmaking is critical for the energy conservation and emission reduction in steel industry. Currently, the utilization of iron-carbon agglomerate(ICA) is most likely to be practically employed in BF. The principle of low carbon BF smelting with charging ICA was clarified. Furthermore, the preparation process and the optimization of the metallurgical properties of ICA were systematically studied. Also, the effects of ICA on the reduction process of iron-bearing burden and the softening-dripping properties of mixed burdens were experimentally investigated. Moreover, the related mechanism was revealed. The integral technology for the preparation and application of ICA manufactured by shaft furnace process was formed. The results showed that the optimized conditions for the preparation of ICA are that the mixtures of 15% iron ore B, 55% bituminous coal A, 10% bituminous coal B, and 20% anthracite C are pressed at 300 ℃ and then carbonized at 1 000 ℃ for 4 h. Under the optimized conditions, the compressive strength, the reactivity, and the post-reaction strength of ICA are 4 970 N, 61.08%, and 51.23%, respectively. Furthermore, with mixed charging 10% ICA, the reduction degree of pellet at 1 100 ℃ is increased by 7.69%. Moreover, with increasing the addition of ICA in mixed burden, the softening zone of mixed burden is increased from 206.3 to 218.9 ℃, while the melting zone is decreased from 171.1 to 124.8 ℃. The dripping ratio is firstly enhanced and then declined, but the permeability is improved. The appropriate addition of ICA in mixed burden is no more than 30% of coke.
引文
[1] Wang C,Ryman C,Dahl J.Potential CO2 emission reduction for BF-BOF steelmaking based on optimized use of ferrous burden materials[J].International Journal of Greenhouse Gas Control,2009,3(1):29.
    [2] 储满生,王宏涛,柳政根,等.高炉炼铁过程数学模拟的研究进展[J].钢铁,2014,49(11):1.(Chu M S,Wang H T,Liu Z G,et al.Research progress on mathematical modeling of blast furnace ironmaking process[J].Iron and Steel,2014,49(11):1.)
    [3] Wang H T,Zhao W,Chu M S,et al.Current status and development trends of innovative blast furnace ironmaking technologies aimed to environmental harmony and operation intellectualization[J].Journal of Iron and Steel Research International,2017,24(8):751.
    [4] Xu W Q,Cao W J,Zhu T Y,et al.Material flow analysis of CO2 emissions from blast furnace and basic oxygen furnace steelmaking systems in China[J].Steel Research International,2015,86(9):1063.
    [5] 张琦,贾国玉,蔡九菊,等.钢铁企业炼铁系统碳素流分析及CO2减排措施[J].东北大学学报:自然科学版,2013,34(3):392.(Zhang Q,Jia G Y,Cai J J,et al.Carbon flow analysis and CO2 emission reduction strategies of iron-making system in steel enterprise[J].Journal of Northeastern University:Natural Science,2013,34(3):392.)
    [6] Nomura S,Higuchi K,Kunitomo K,et al.Reaction behavior of formed coke and its effect on degreasing thermal reserve zone temperature in blast furnace[J].ISIJ International,2010,50(10):1388.
    [7] Yamamoto T,Sato T,Fujimoto H,et al.Reaction behavior of ferro coke and its evaluation in blast furnace[J].Tetsu-to-Hagané,2011,97(10):501.
    [8] 王宏涛,储满生,应自伟,等.铁焦新型碳铁复合炉料研发现状[J].烧结球团,2017,42(4):44.(Wang H T,Chu M S,Ying Z W,et al.Current status on ferro coke technology development[J].Sintering and Pelletizing,2017,42(4):44.)
    [9] Nomura S,Terashima H,Sato E,et al.Some fundamental aspects of highly reactive iron coke production[J].ISIJ International,2007,47(6):823.
    [10] Naito M,Okamoto A,Yamaguchi K,et al.Improvement of blast furnace reaction efficiency by temperature control of thermal reserve zone[J].Nippon Steel Technical Report,2006(94):103.
    [11] Nomura S,Matsuzaki S,Naito M,et al.Improvement in blast furnace reaction efficiency through the use of catalyst-doped highly reactive coke[J].Nippon Steel Technical Report,2006(94):109.
    [12] Higuchi K,Nomura S,Kunitomo K,et al.Enhancement of low-temperature gasification and reduction by using iron-coke in laboratory scale tests[J].ISIJ International,2011,51(8):1308.
    [13] Takashi A,Kiyoshi F,Hidekazu F.Development of carbon iron composite process[R].JFE Technical Report,2009(13):1.
    [14] Takeda K,Anyashiki T,Sato T,et al.Recent developments and mid- and long-term CO2 mitigation projects in ironmaking[J].Steel Research International,2011,82(5):512.
    [15] Yamamoto T,Sato T,Fujimoto H,et al.Effect of raw materials on reaction behavior of carbon iron composite[J].Tetsu-to-Hagané,2010,96(12):683.
    [16] 储满生,赵伟,柳政根,等.高炉使用含碳复合炉料的原理[J].钢铁,2015,50(3):9.(Chu M S,Zhao W,Liu Z G,et al.Principle on using carbon iron composite as blast furnace burden[J].Iron and Steel,2015,50(3):9.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700