用户名: 密码: 验证码:
φ5.35mm-2100MPa桥梁用锌铝钢丝的工艺与组织性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Manufacturing technology,microstructural and mechanical properties of φ5.35 mm-2100MPa grade hot galvalume steel wire for bridge cable
  • 作者:王林烽 ; 周立初 ; 陈华青 ; 胡显军 ; 方峰 ; 蒋建清
  • 英文作者:WANG Lin-feng;ZHOU Li-chu;CHEN Hua-qing;HU Xian-jun;FANG Feng;JIANG Jian-qing;School of Materials Science and Engineering,Southeast University;Jiangyin Walsin Steel Cable Co.,Ltd.;Institute of Research of Iron and Steel(Shasteel);
  • 关键词:桥梁缆索 ; 锌铝钢丝 ; 冷拉拔 ; 抗拉强度 ; 扭转性能
  • 英文关键词:bridge cable;;hot-dip galvalume wire;;cold drawn;;tensile strength;;torsional property
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:东南大学材料科学与工程学院;江阴华新钢缆有限公司;江苏(沙钢)钢铁研究院;
  • 出版日期:2019-02-15
  • 出版单位:钢铁
  • 年:2019
  • 期:v.54
  • 基金:江苏省成果转化专项资金资助项目(BA2017112);; 江苏省六大人才高峰计划资助项目(2015-XCL-004);; 江苏省产学研前瞻基金资助项目(BY2016076-08)
  • 语种:中文;
  • 页:GANT201902016
  • 页数:7
  • CN:02
  • ISSN:11-2118/TF
  • 分类号:96-102
摘要
为了制备更高强度级别的桥梁缆索用热镀锌铝钢丝,通过对高碳钢盘条的成分设计、低损伤拉拔技术以及热浸镀锌铝等工艺过程的优化,成功试制出φ5.35 mm-2 100 MPa级桥梁缆索用热镀锌铝钢丝。设计的SWRS92Si盘条主要成分为(质量分数):C 0.90%~0.95%,Si 0.8%~1.1%,Cr 0.20%~0.30%。试制结果表明,φ13 mmSWRS92Si盘条经铅浴处理后,珠光体层片平均尺寸从120下降至90 nm,盘条强度上升约260 MPa。经冷拉拔与热镀锌铝后,层片宽度约40 nm的珠光体层片未明显球化,可制备出2 100 MPa级直径5.35 mm的桥梁缆索用热镀锌铝钢丝。钢丝的平均抗拉强度为2 128 MPa,平均断后伸长率为5.4%,扭转圈数平均值为22圈,断口均为平断口,镀层较均匀致密;其他性能指标均优于交通部标准JT/T 1104—2016《桥梁用热镀锌铝合金钢丝》中的要求。
        In order to prepare the higher strength grade of bridge cables,the bridge cables use galvanized aluminum wire2 100 MPa grade hot-dip galvalume steel wires with a diameter of 5.35 mm was developed through the composition design of high carbon steel rod,low damage drawing technology and optimization of hot-dip process. The main composition of designed SWRS92 Si steel rod was 0.90%-0.95% C,0.8%-1.1% Si and 0.20%-0.30% Cr. Experimental results showed that the φ5.35 mm-2 100 MPa wire could be manufactured by using φ13 mm-SWRS92 Si rod after lead patent.The average interlamellar spacing of pearlite in steel rod was decreased from 120 nm to 90 nm after lead patenting,and rod strength increased by about 260 MPa. After cold drawing,the interlamellar spacing of pearlite in the steel wire was decreased to about 40 nm. Spheroidizing cementite could not observed in the pearlitic wire after hot galvalume. The tensile strength and average elongation of wire were about 2 128 MPa and 5.4%,respectively. The torsion cycles of the wire were about 22,and the torsion fracture was cleavage fracture. Other properties of the wires were met the requirements of Chinese Ministry of transportation standards JT/T 1104—2016.
引文
[1]徐德志,万志勇,梁立农.虎门二桥引桥总体设计[J].国防交通工程与技术,2015,13(4):22.(XU De-zhi,WAN Zhi-yong,LIANG Li-nong. Overall design of humen second bridge river bridge[J]. Traffic Engineering and Technology for National Defense,2015,13(4):22.)
    [2]张成东,肖海珠,徐恭义.杨泗港长江大桥总体设计[J].桥梁建设,2016,46(2):1.(ZHANG Cheng-dong,XIAO Hai-zhu,XU Gong-yi. Overall design of Yangsigang Changjiang RiverBridge[J]. Bridge Construction,2015,45(6):1.)
    [3]高宗余,梅新咏,徐伟,等.沪通长江大桥总体设计[J].桥梁建设,2015,45(6):1.(GAO Zong-yu,MEI Xin-yong,XU Wei,et al. Overall design of Hutong Changjiang River Bridge[J].Bridge Construction,2015,45(6):1.)
    [4] ZHOU L C,WANG L F,CHEN H Q,et al. Effects of chromium additions upon microstructure and mechanical properties of cold drawn pearlitic steel wires[J]. Journal of Materials Engineering and Performance,2018,27(2):1
    [5] FANG F,HU X J,ZHOU L C,et al. Effect of vanadium on microstructure and property of pearlitic steel wire[J]. Materials Research Innovations,2015,19(S8):394.
    [6]张朝生. 2 000 MPa热镀锌钢丝和2 300 MPa级PC钢绞线用线材的开发[J].世界桥梁,2000(2):72.(ZHANG Chaosheng. Development of 2 000 MPa hot-dip galvanized steel wire and 2 300 MPa grade PC stranded wire[J]. Foreign Bridges,2000(2):72.)
    [7]方峰,胡显军,王珺,等.钢丝拉拔过程损伤模型及模拟计算[J].钢铁,2011,46(6):50.(FANG Feng,HU Xian-jun,WANG Jun,et al. Damage model and calculation of wire in drawing[J].Iron and Steel,2011,46(6):50.)
    [8] FANG F,HU X J,CHEN S H,et al. Revealing microstructural and mechanical characteristics of cold drawn pearlitic steel wires undergoing simulated galvanization treatment[J]. Materials Science and Engineering A,2012,547(6):51.
    [9] ZHOU L C,FANG F,WANG L F,et al. Torsion delamination and recrystallized cementite of heavy drawing pearlitic wires after low temperature annealing[J]. Materials Science and Engineering A,2018,713:52.
    [10] FANG F,ZHAO Y F,LIU P P,et al. Deformation of cementite in cold drawn pearlitic steel wire[J]. Materials Science and Engineering A,2014,608:11.
    [11]胡显军,周立初,王雷,等.剧烈塑性变形对珠光体钢丝奥氏体转变的影响[J].钢铁,2016,51(5):62.(HU Xian-jun,ZHOU Li-chu,WANG Lei,et al. Effect of severe plastic deformation on austenitization transformation of pearlitic wire[J].Iron and Steel,2016,51(5):62.)
    [12] Zelin M. Microstructure evolution in pearlitic steels during wire drawing[J]. Acta Materialia,2002,50(17):4431.
    [13] HU X J,WANG L,FANG F,et al. Origin and mechanism of torsion fracture in cold-drawn pearlitic wires[J]. Journal of Materials Science,2013,48(16):5528.
    [14] Joung S W,Kang U G,Hong S P,et al. Aging behavior and delamination in cold drawn and post-deformation annealed hypereutectoid steel wires[J]. Materials Science and Engineering A,2013,586(6):171.
    [15] Lee J W,Lee J C,Lee Y S,et al. Effects of post-deformation annealing conditions on the behavior of lamellar cementite and the occurrence of delamination in cold drawn steel wires[J].Journal of Materials Processing Tech,2009,209(12):5300.
    [16] Tanaka M,Saito H,Yasumaru M,et al. Nature of delamination cracks in pearlitic steels[J]. Scripta Materialia,2016,112:32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700