用户名: 密码: 验证码:
裂隙充填型天然气水合物储层的各向异性饱和度新估算及其裂隙定量评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:New estimation of anisotropic saturation and fracture quantitative evaluation for fracture-filling gas hydrate reservoir
  • 作者:钱进 ; 王秀娟 ; 董冬冬 ; SAINKalachand ; 叶月明
  • 英文作者:QIAN Jin;WANG Xiu-Juan;DONG Dong-dong;SAIN KalachAND;YE Yue-ming;Key Laboratory of Marine Geology and Environment and Institute of Oceanology, Chinese Academy of Sciences;Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology;Center for Ocean Mega-Science, Chinese Academy of Sciences;Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology;CSIR-National Geophysical Research Institute;Hangzhou Research Institute of Geology;
  • 关键词:裂隙充填型天然气水合物 ; 有效介质理论 ; 裂隙定量评价 ; 各向异性 ; 饱和度
  • 英文关键词:Fracture-filling gas hydrate;;Effective medium theory;;Fracture quantitative evaluation;;Anisotropy;;Saturation
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:中国科学院海洋研究所海洋地质与环境重点实验室;青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室;中国科学院海洋大科学研究中心;青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室;印度国家地球物理研究所;中国石油杭州地质研究院;
  • 出版日期:2018-07-25 16:25
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.153
  • 基金:国家自然科学基金项目(41676040,41676041,41504105);; 国家重点研发计划(2017YFC0307601);; 国际科技合作计划(2010DFA21740)联合资助
  • 语种:中文;
  • 页:DQWJ201901048
  • 页数:11
  • CN:01
  • ISSN:11-2982/P
  • 分类号:360-370
摘要
天然气水合物有时会以结核状、层状、脉状或块状等裂隙形态发育在深水盆地的细粒泥质沉积物中,该类型天然气水合物被称为裂隙充填型.与孔隙充填型不同,裂隙充填型天然气水合物储层由于裂隙的出现,在测井速度、电阻率和地震数据上会呈现明显的各向异性特征.本文利用细层层状介质模型和有效介质理论(EMT)新估算出印度克里希纳—戈达瓦里(K-G)盆地NGHP-01-10A和10D孔裂隙充填型水合物储层的各向异性饱和度,纵波(V_p)和垂直极化横波(V_(sv))测井速度估算的平均饱和约为20%,明显优于水平极化横波(V_(sh))估算结果,且与压力取心估算结果更为一致.倾角随深度变化曲线和不同角度估算的水合物饱和度结果都表明10A孔浅部以高倾角裂隙为主,深部出现低倾角裂隙;10D孔以垂直裂隙为主,这说明两口相距10 m的孔中裂隙在空间上延伸长度较小;而10B-08Y岩心的X射线成像定量评价结果显示水平裂隙倾角位于0°~21°,高倾角裂隙倾角位于68°~89°,裂隙尺度为厘米级,最大高度、宽度和纵横比分别为27.66 cm、6.71 cm和170.此外,水合物饱和度估算的影响因素分析表明,地层岩性和方程计算参数对饱和度估算的准确与否至关重要,与简化三相方程相比,有效介质理论计算参数的物理意义明确,参数选择简易,因此计算也更为准确与便捷.
        In the deepwater basin,gas hydrates are sometimes developed in the form of nodular,veins,layers or massive of pure gas hydrate within the fine-grained sediments,which we called fracture-filling gas hydrate. Fracture-filling gas hydrate is distinguished from pore-filling gas hydrate because velocity, resistivity and seismic data always appear to be anisotropy in the fractured reservoir. Based on the layered medium model, the effective medium theory was used to newly estimate anisotropic saturation in the fracture-filling gas hydrate reservoir for the two holes of NGHP-01-10 A and-10 D,Krishna-Godavari Basin,India. The average anisotropic hydrate saturations estimated from P-wave velocity and vertical polarized S-wave velocity are consistent with those estimated from pressures cores with the value of 20%. Dip curve and anisotropic saturations show that fractures in shallow sediments has remained predominantly with high angles and fractures with small angles appear in deep sediments while only vertical fractures exist in the hole 10 D,which illustrates the extent of gas hydrate filled fractures is short between the two holes with 10 m apart. X-ray image shows the dip of fractures with centimeter scale are concentrated at 0° to 21° and 68° to 89° and the maximum height,width,and aspect ratio of fractures are 27. 66 cm,6. 71 cm,and170,respectively. In addition,the analysis of influencing factors shows that both sediment lithology and calculation parameters of equation are very important to accurately estimate the gas hydrate saturation. Compared with the three-phase simplified equation,the calculation of effective medium theory is more accurate and convenient because of its explicit physical meaning and simple calculation parameters.
引文
Asquith G B,Krygowski D. 2004. Basic well log analysis [J]. AAPG. Methods in exploration,16,31-35.
    Carcione J M,Tinivella U. 2000. Bottom-simulating reflectors: Seismic velocities and AVO effects [J]. Geophysics,65(1): 54- 67.
    Chen D F,Li X X,Xia B. 2004. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea [J]. Chinese J. Geophys. (in Chinese),47(3): 483- 489,doi: 10.3321/j.issn:0001-5733.2004.03.018.陈多福,李绪宣,夏斌. 2004. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报,47(3): 483- 489,doi: 10.3321/j.issn:0001-5733.2004.03.018.
    Collett T S,Lee M W,Zyrianova M V,et al. 2012. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis [J]. Mar. Petrol. Geol.,34(1): 41- 61.
    Collett T S,Riedel M,Cochran J,et al. 2008. Indian National Gas Hydrate Program Expedition 01 Initial Reports: Prepared by the U.S. Geological Survey and Published by the Directorate General of Hydrocarbons,Ministry of Petroleum & Natural Gas (India),1 DVD.
    Cook A E,Anderson B I,Malinverno A,et al. 2010. Electrical anisotropy due to gas hydrate-filled fractures [J]. Geophysics,75(6): F173- F185.
    Cook A E,Goldberg D. 2008a. Extent of gas hydrate filled fracture planes: Implications for in situ methanogenesis and resource potential [J]. Geophy. Res. Lett.,35(15): L15302.
    Cook A E,Goldberg D. 2008b. Stress and gas hydrate-filled fracture distribution,Krishna-Godavari Basin,India [J]. Proceeding of the 6th International Conference on Gas Hydrate,Vancouver,Canada.
    Dewangan P,Striam G,Ramprasad T,et al. 2009. Rock physics modeling of shallow marine sediments in the eastern continental margin of India [J]. Proceedings of the Eighth ISOPE Ocean Mining Symposium,34-36.
    Dvorkin J,Prasad M,Sakai A,et al. 1999. Elasticity of marine sediments:Rock physics modelling [J]. Geophy.Res.Lett.,26(12):1781-1784.
    Ecker C,Dvorkin J,Nur A M. 2000. Estimating the amount of gas hydrate and free gas from marine seismic data [J]. Geophysics,65(2): 565-573.
    Gao H Y,Zhong G F,Liang J Q,et al. 2012. Estimation of gas hydrate saturation with modified Biot-Gassmann theory: a case from northern South China Sea [J]. Marine geology & quaternary geology (in Chinese),32(4): 83-89.高红艳,钟广法,梁金强,等. 2012. 应用改进的Biot-Gassmann模型估算天然气水合物的饱和度[J]. 海洋地质与第四纪地质,32(4): 83-89.
    Ghosh R,Sain K,Ojha M. 2010. Effective medium modeling of gas hydrate-filled fractures using the sonic log in the Krishna-Godavari basin,offshore eastern India [J]. J Geophys. Res.,115(B6): B06101.
    He T,Lu H L,Lin J Q,et al. 2017. Geophysical techniques of reservoir monitoring for marine gas hydrate exploitation [J]. Earth Science Frontiers (in Chinese),24(5): 368-382.何涛,卢海龙,林进清,等. 2017. 海域天然气水合物开发的地球物理监测[J]. 地学前缘,24(5): 368-382.
    Holland M,Schultheiss P,Roberts J,et al. 2008. Observed gas hydrate morphologies in marine sediments [J]. Proceedings of the 6th international conference on gas hydrates (ICGH6-2008),Vancouver,Canada.
    Hu G W,Li C F,Ye Y G,et al. 2014. Observation of gas hydrate distribution in sediment pore space [J]. Chinese J. Geophys. (in Chinese),57(5): 1675-1682,doi: 10.6038/cjg20140530.胡高伟,李承峰,业渝光,等. 2014. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报,57(5): 1675-1682,doi: 10.6038/cjg20140530.
    Jiang G L,Wu Q B,Pu Y B,et al. 2005. Computerized tomography identifying and its imaging characteristics incombination and dissociation process of methane hydrate [J]. Natural Gas Geoscience (in Chinese),16(6): 814-817.蒋观利,吴青柏,蒲毅彬,等. 2005. 甲烷水合物形成过程的CT识别原理和成像特征[J]. 天然气地球科学,16(6): 814-817.
    Kim G Y,Yi B Y,Yoo D G,et al. 2011. Evidence of gas hydrate from downhole logging data in the Ulleung Basin,East Sea [J]. Mar. Petrol. Geol.,28(10): 1979-1985.
    Lee M W,Collett T S. 2009. Gas hydrate saturations estimated from fractured reservoir at Site NGHP- 01-10,Krishna-Godavari Basin,India [J]. J. Geophys. Res.: Solid Earth,114(B7),B07102.
    Lee M W,Collett T S. 2012. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well [J]. Mar. Petrol. Geol.,34(1): 62-71.
    Lee M W,Collett T S. 2013. Characteristics and interpretation of fracture-filled gas hydrate—An example from the Ulleung Basin,East Sea of Korea [J]. Mar. Petrol. Geol.,47: 168-181.
    Lee M W,Collett T S,Lewis K A. 2012. Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21B well [J]. Mar. Petrol. Geol.,34(1): 85-95.
    Lee M W,Waite W F. 2008. Estimating pore-space gas hydrate saturations from well log acoustic data [J]. Geochem. Geophys. Geosyst.,9(7),Q07008.
    Li C F,Hu G W,Liu C L,et al. 2012. Application of X-ray computed tomography in natural gas hydrate research [J]. Journal of Tropical Oceanography (in Chinese),31(5): 93-99.李承峰,胡高伟,刘昌岭,等. 2012. X射线计算机断层扫描在天然气水合物研究中的应用[J]. 热带海洋学报,31(5): 93-99.
    Li L Z. 2009. Application of dipole shear wave logging in evaluation of fracturing effect [J]. Tuha Oil & Gas (in Chinese),14(2): 133-136.李留中. 2009. 偶极子横波测井在压裂效果评价中的应用[J]. 吐哈油气,14(2): 133-136.
    Liu C L,Meng Q G. 2014. Applications of X-ray diffraction in natural gas hydrate research [J]. Rock and mineral analysis (in Chinese),33(4): 468- 479.刘昌岭,孟庆国. 2014. X射线衍射法在天然气水合物研究中的应用[J]. 岩矿测试,33(4): 468- 479.
    Liu X W,Li M F,Zhang Y W,et al. 2006. Studies of seismic characteristics about gas hydrate: a case study of line HD152 in the South China Sea [J]. Geoscience (in Chinese),19(1): 33-38.刘学伟,李敏锋,张聿文,等. 2006. 天然气水合物地震响应研究—中国南海HD152测线应用实例[J]. 现代地质,19(1): 33-38.
    Luan X W,Zhang L,Yue B J. 2010. Influence on gas hydrates formation produced by volcanic activity on northern South China Sea slope [J]. Geoscience (in Chinese),24(3): 424- 432.栾锡武,张亮,岳保静. 2010. 南海北部陆坡海底火山活动对天然气水合物成藏的影响[J]. 现代地质,24(3): 424- 432.
    Müller C,B?nnemann C,Neben S. 2007,AVO study of a gas-hydrate deposit,offshore Costa Rica [J]. Geophys. Prospec.,55(5): 719-735.
    Ning F L,Liu L,Li S,et al. 2013. Well logging assessment of natural gas hydrate reservoirs and relevant influential factors [J]. Acta Petrolei Sinica (in Chinese),34(3): 591- 606.宁伏龙,刘力,李实,等. 2013. 天然气水合物储层测井评价及其影响因素[J]. 石油学报,34(3): 591- 606.
    Qian J,Wang X J,Dong D D,et al. 2015. Seismic anisotropic modeling of fracture-filling gas hydrate [J]. Marine geology & quaternary geology (in Chinese),35(4): 149-154.钱进,王秀娟,董冬冬,等. 2015. 裂隙充填型天然气水合物的地震各向异性数值模拟[J]. 海洋地质与第四纪地质,35(4): 149-154.
    Qian J,Wang X J,Dong D D,et al. 2016. Quantitative assessment of free gas beneath gas hydrate stability zone from prestack seismic data and rock physics: a case of hole NGHP01-10A,Krishna-Godavari Basin,India [J]. Chinese Journal of Geophysics (in Chinese),59(7): 2553-2563,doi: 10.6038/cjg20160720.钱进,王秀娟,董冬冬,等. 2016. 基于叠前地震数据和岩石物理的游离气定量估算方法—以印度Krishna-Godavari盆地NGHP01-10A井为例[J].地球物理学报,59(7): 2553-2563,doi: 10.6038/cjg20160720.
    Qian J,Wang X J,Wu S G,et al. 2014. AVO analysis of BSR to assess free gas within fine-grained sediments in the Shenhu area,South China Sea [J]. Mar. Geophys. Res.,35(2): 125-140.
    Ruan A G,Li X Y. 2006. Analysis of AVA method for gas hydrate study [J]. J. Mar. Sci. (in Chinese),24(4): 1-11.阮爱国,李湘云. 2006. 天然气水合物研究中的AVA方法分析[J]. 海洋学研究,24(4): 1-11.
    Sha Z B,Liang J Q,Zhang G X,et al. 2015. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations [J]. Mar. Geol.,366: 69-78.
    Song H B,Song L X,Wu N Y,et al. 2001. Geophysical researches on marine gas hydrates (I): physical properties [J]. Progress in Geophysics (in Chinese),16(2): 118-126,doi: 10.3969/j.issn.1004-2903.2001.02.015.宋海斌,松林修,吴能友,等. 2001. 海洋天然气水合物的地球物理研究(I): 岩石物性[J]. 地球物理学进展,16(2): 118-126,doi: 10.3969/j.issn.1004-2903.2001.02.015.
    Sriram G,Dewangan P,Ramprasad T,et al. 2013. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit [J]. J Geophys. Res. Solid Earth,118(5): 2258-2274.
    Thomsen L. 1986. Weak elastic anisotropy [J]. Geophysics,51(10): 1954-1966.
    Wang J L,Wang X J,Qian J,et al. 2013. Anisotropic analysis and saturation estimation of gas hydrate filled in fractures: a case of site NGHP01-10D,offshore eastern India [J]. Chinese J. Geophys. (in Chinese),56(4): 1312-1320,doi: 10.6038/cjg20130425.王吉亮,王秀娟,钱进,等. 2013. 裂隙充填型天然气水合物的各向异性分析及饱和度估算——以印度东海岸NGHP01-10D井为例. 地球物理学报,56(4): 1312-1320,doi: 10.6038/cjg20130425.
    Wang X J,Hutchinson D R,Wu S G,et al. 2011. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area,South China Sea [J]. J. Geophys. Res.,116(B5): B05102.
    Wu N Y,Yang S X,Wang H B,et al. 2009. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area,northern South China Sea [J]. Chinese J. Geophys. (in Chinese),52(6): 1641-1650,doi: 10.3969/j.issn.0001-5733.2009.06.027.吴能友,杨胜雄,王宏斌,等. 2009. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报,52(6): 1641-1650,doi: 10.3969/j.issn.0001-5733.2009.06.027.
    Wu N Y,Zhang H Q,Yang S X,et al. 2007. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu area,north slope of South China Sea [J]. Natur Gas Ind. (in Chinese),27(9): 1- 6.吴能友,张海啟,杨胜雄,等. 2007. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业,27(9): 1- 6.
    Yan P,Chen D F. 2009. New geophysical evidence for gas hydrates in Baiyun Sag in the northern margin of the South China Sea [J]. J. Trop. Ocea. (in Chinese),28(3): 85.阎贫,陈多福. 2009. 南海北部白云凹陷渗漏型天然气水合物地球物理证据[J]. 热带海洋学报,28(3): 85.
    Yang S X,Zhang G X,Zhang M,et al. 2014. A complex gas hydrate system in the Dongsha area,South China Sea: results from drilling expedition GMGS2. Proceeding of the 8th International Conference on Gas hydrates (ICGH8),Beijing,China.
    Zhang G X,Liang J Q,Lu J A,et al. 2015. Geological features,controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin,South China Sea [J]. Mar. Petrol. Geol.,67: 356-367.
    Zhang G X,Zhang M,Yang S X,et al. 2011. Application of seismic detecting technique to marine gas hydrate survey [J]. Mar. Geol. & Quarter. Geol. (in Chinese),31(4): 51-58.张光学,张明,杨胜雄,等. 2011. 海洋天然气水合物地震检测技术及其应用[J]. 海洋地质与第四纪地质,31(4): 51-58.
    Zhang H Q,Yang S X,Wu N Y,et al. 2007. Successful and surprising results for China’s first gas hydrate drilling expedition. Fire in the Ice Newsletter,7(3): 6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700