用户名: 密码: 验证码:
GLASS、MODIS和GlobAlbedo反照率产品在青藏高原典型高寒草地的适用性评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation the Applicability of Albedo Products of GLASS,MODIS and GlobAlbedo under the Alpine Meadow over the Qinghai-Tibetan Plateau
  • 作者:安颖颖 ; 孟宪红 ; 赵林 ; 李照国 ; 吕世华 ; 马御棠
  • 英文作者:AN Yingying;MENG Xianhong;ZHAO Lin;LI Zhaoguo;L Shihua;MA Yutang;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Region,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;Wuwei Meteorological Bureau;University of Chinese Academy of Science;Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,School of Atmospheric Sciences,Chengdu University of Information Technology;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology;Yunnan Power G rid Company Limited;
  • 关键词:地表反照率 ; GLASS ; MODIS ; GlobAlbedo ; 评估
  • 英文关键词:Surface albedo;;GLASS;;MODIS;;GlobAlbedo;;evaluation
  • 中文刊名:GYQX
  • 英文刊名:Plateau Meteorology
  • 机构:中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室;甘肃省武威市气象局;中国科学院大学;成都信息工程大学大气科学学院高原大气与环境四川省重点实验室;南京信息工程大学气象灾害预报预警与评估协同创新中心;云南电网有限责任公司电力科学研究院;
  • 出版日期:2019-02-28
  • 出版单位:高原气象
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金项目(41822501,91437102,41375015,41775016);; 中国科学院寒区旱区环境与工程研究所青年STS项目(Y651671001);中国科学院创新促进会会员经费(2014384);; 公益性行业(气象)科研专项(GYHY201506001-04);; 云南电网公司科技项目(YNKJXM20160032)
  • 语种:中文;
  • 页:GYQX201901008
  • 页数:13
  • CN:01
  • ISSN:62-1061/P
  • 分类号:91-103
摘要
地表反照率是表征陆面过程地表能量收支的关键物理参数,对于准确以及定量化地理解高原上的能量和水分循环过程有着至关重要的作用。利用黄河源区玛曲和玛多两个高寒草地站点长达8年的地表反照率观测数据,对GLASS (Global Land Surface Satellite)、MODIS (Moderate Resolution Imaging Spectroradiometer)和GlobAlbedo地表反照率产品进行了评估与分析。结果显示,玛曲地表反照率的年际变化较小,集中在0. 16~0. 28。各遥感产品在玛曲地区精度各有不同:GlobAlbedo反照率平均比地面观测偏高0. 048;而GLASS和MODIS反照率分别偏低0. 074和0. 063。统计值表明,MODIS产品精度相对最高,其中RMSE=0. 069,R=0. 710。受积雪影响,玛多地区地表反照率年际变化较大。遥感产品中,GLASS产品精度相对较高,其中RMSE=0. 104,R=0. 598。玛曲站地表反照率值为:冬季>春季>秋季>夏季,平均值依次为0. 25,0. 22,0. 19和0. 18。玛曲站年平均地表反照率为0. 21;玛多站为0. 25,而且季节变化较玛曲站更显著,呈现近似"U"形分布。夏季反照率最小,平均值为0. 18,秋季为0. 22,与春季较为接近,冬季平均值最大为0. 33。基于两个观测站点的对比表明,三种遥感地表反照率产品春夏季与地面观测一致性较好,秋季反照率开始增大的时间比观测早,冬季后期反照率的值明显小于地面观测。另外,GLASS和MODIS产品的差异也在秋冬季达到最大。MODIS分离雪和云的能力使其在秋冬季的表现更好。
        Surface albedo is a key physical parameter affecting the energy budget and crucial for accurately and quantitatively estimating the energy and water cycle processes on the Tibetan Plateau. Based on the eight years' observations of surface albedo under the alpine meadowover Maqu and Maduo stations in the source region of the YellowRiver,the remote sensing products of Global Land Surface Satellite( GLASS),Moderate Resolution Imaging Spectroradiometer( MODIS) and GlobAlbedo were evaluated and analyzed. The results showthat the observed albedo of Maqu concentrated in 0. 16 ~ 0. 28 from 2009 to 2016. The GlobAlbedo albedo is greater than the mean observation by 0. 048,while the GLASS and MODIS are belowthe observed value by 0. 074 and0. 063,respectively. Relatively,MODIS is closest to the Maqu observation,with RMSE = 0. 069 and R = 0. 710.The observed surface albedo at Maduo has a large interannual variation due to the snoweffects. GLASS is the highest stability product comparing with the Maduo observation,with RMSE = 0. 104 and R = 0. 598. The observed seasonal variation of surface albedo of Maqu is: winter>spring>autumn>summer,with the average of albedo is 0. 25,0. 22,0. 19 and 0. 18,respectively. The observed annual albedo of Maqu is 0. 21; and that of Maduo is 0. 25. Seasonal variation in albedo of Maduo is more significant than that of Maqu,which shows the typical "U"structure. The seasonal mean of observation in Maduo station is 0. 18( summer),0. 22( spring and autumn) and0. 33( winter). Generally,the consistency of the three surface albedo products with the observations is relatively high in spring and summer,but the increase in the albedo of the three products is earlier than observations in autumn and the albedo is significantly smaller than observations in the late winter or early spring. In addition,for the two sites,the maximum bias between GLASS and MODIS products occur in the autumn and winter,which further demonstrates systematic bias in the snowmapping algorithms of these surface albedo products,and MODIS performs better because of the ability to separate snowfrom clouds.
引文
Chen F,Dudhia J,2001.Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system.Part I:Model implementation and sensitivity[J].Monthly Weather Review,129(4):569-585.
    Dickinson R E,1983.Land surface processes and climate-surface albedos and energy balance[J].Advances in geophysics,25:305-353.
    Dickinson R E,1986.Biosphere/atmosphere transfer scheme(BATS)for the NCAR community climate model[J].Technical report,NCAR.
    Geleyn J F,Preuss H J,1983.A new data set of satellite-derived surface albedo values for operational use at ECMWF[J].Meteorology and Atmospheric Physics,32(4):353-359.
    Hall D K,Riggs G A,Salomonson V V,et al,2002.MODIS snow-cover products[J].Remote sensing of Environment,83(1/2),181-194.
    Lewis P,Guanter L,López G,et al,2012.GlobAlbedo Algorithm Theoretical Basis Document V3.1[Z].http://www.globalbedo.org.[2018-03-15].
    Li Y,Wang T,Zeng Z,et al,2016.Evaluating biases in simulated land surface albedo from CMIP5 global climate models[J].Journal of Geophysical Research:Atmospheres,121(11):6178-6190.
    Liang S,2003.A direct algorithm for estimating land surface broadband albedos from MODIS imagery.IEEE Transactions on Geoscience and Remote Sensing,41(1),136-145.
    Liu Q,Wang L,Qu Y,et al,2013.Preliminary evaluation of the longterm GLASS albedo product.International Journal of Digital Earth,6:69-95.
    Lofgren B M,1995.Surface albedo-climate feedback simulated using twoway coupling[J].Journal of Climate,8(10):2543-2562.
    Nai Y,Zeng X,Dickinson R E,2001.Common Land Model(CLM)Technical Documentation and User’s Guide[Z].http://www.cesm.ucar.edu/models/clm.[2018-03-15].
    Niu G Y,Yang Z L,Mitchell K E,et al,2011.The community Noah land surface model with multiparameterization options(Noah-MP):1.Model description and evaluation with local-scale measurements[J].Journal of Geophysical Research:Atmospheres,116(D12):1248-1256.
    Niu K,Choler P,Zhao B,et al,2009.The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands[J].Functional ecology,23(2):274-283.
    Pinty B,Roveda F,Verstraete M M,et al,2000.Surface albedo retrieval from Meteosat:2.Applications[J].Journal of Geophysical Research:Atmospheres,105(D14):18113-18134.
    Pinty B,Taberner M,Haemmerle V R,et al,2011.Global-scale comparison of MISR and MODIS land surface albedos[J].Journal of Climate,24(3):732-749.
    Román M O,Schaaf C B,Woodcock C E,et al,2009.The MODIS(Collection V005)BRDF/albedo product:Assessment of spatial representativeness over forested landscapes[J].Remote Sensing of Environment,113(11):2476-2498.
    Taberner M,Pinty B,Govaerts Y,et al,2010.Comparison of MISR and MODIS land surface albedos:Methodology[J].Journal of Geophysical Research:Atmospheres,115:D05101.DOI:10.1029/2009JD012665.
    Wang S,Zhang Y,LüS,et al,2013.Estimation of turbulent fluxes using the flux-variance method over an alpine meadow surface in the eastern Tibetan Plateau[J].Advances in Atmospheric Sciences,30(2):411.
    Ye D Z,Gao Y X,1979.The meteorology of the Qinghai-Xizang(Tibet)plateau[J].Beijing:Science Press,1-278.
    Zhao L,Jin J,Wang S Y,et al,2012.Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region[J].Journal of Geophysical Research:Atmospheres,117(D9).
    陈隆勋,龚知本,温玉璞,等,1964.东亚地区的大气辐射能的收支(一)-地球和大气的太阳辐射能收支[J].气象学报,32(2):146-161.
    陈爱军,胡慎慎,卞林根,等,2015.青藏高原GLASS地表反照率产品精度分析[J].气象学报,73(6):1114-1120.
    陈爱军,梁学伟,卞林根,等,2016a.青藏高原MODIS地表反照率反演质量分析[J].高原气象,35(2):277-284.DOI:10.7522/j.issn.1000-0534.2015.00015.
    陈爱军,吴倩倩,卞林根,等,2016b.青藏高原MODIS地表反照率与地面观测结果的比较[J].科技通报32(11):47-50.
    陈爱军,周婵,卞林根,等,2016c.藏北高原GlobAlbedo地表反照率的精度分析[J].高原气象,35(4):887-894.DOI:10.7522/j.issn.1000-0534.2015.00097.
    胡慎慎,2016.多源数据对比分析青藏高原GLASS地表反照率[D].南京:南京信息工程大学.
    刘晓东,田良,韦志刚,1994.青藏高原地表反射率变化对东亚夏季风影响的数值试验[J].高原气象,13(4):468-472.
    林朝晖,1995.气候模式中的反馈机制及模式改进的研究[D].北京:中国科学院大气物理研究所.
    刘强,瞿瑛,王立钊,等,2012.GLASS陆表反照率产品使用手册[Z/OL].http://www.docin.com/p-912177174.html.[2018-03-22].
    梁顺林,张晓通,肖志强,等,2014.全球陆表特征参量(GLASS)产品算法验证与分析[M].北京:高等教育出版社.
    李照国,吕世华,奥银焕,等,2012.鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析[J].地理科学进展,31(5):602-608.
    李德帅,王金艳,王式功,等,2014.陇中黄土高原半干旱草地地表反照率的变化特征[J].高原气象,33(1):89-96.DOI:10.7522/j.issn.1000-0534.2012.00178.
    廖瑶,吕达仁,何晴,2014.MODIS,MISR与POLDER 3种全球地表反照率卫星反演产品的比较与分析[J].遥感技术与应用,29(6):1008-1019.
    李丹华,文莉娟,隆霄,等,2017.积雪对玛曲局地微气象特征影响的观测研究[J].高原气象,36(2):330-339.DOI:10.7522/j.issn.1000-0534.2016.00074.
    李燕,闫加海,张冬峰,2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象,37(2):317-324.DOI:10.7522/j.issn.1000-0534.2017.00040.
    马耀明,刘东升,苏中波,等,2004.卫星遥感藏北高原非均匀陆表地表特征参数和植被参数[J].大气科学,28(1):23-31.
    马耀明,姚檀栋,王介民,等,2006.青藏高原复杂地表能量通量研究[J].地球科学进展,21(12):1215-1223.
    齐文栋,刘强,洪友堂,2014.3种反演算法的地表反照率遥感产品对比分析[J].遥感学报,18(3):559-572.
    孙俊,胡泽勇,荀学义,等,2011.黑河中上游不同下垫面反照率特征及其影响因子分析[J].高原气象,30(3):607-613.
    王介民,高峰,2004.关于地表反照率遥感反演的几个问题[J].遥感技术与应用,19(5):295-300.
    王鸽,韩琳,2010.地表反照率研究进展[J].高原山地气象研究,30(2):79-83.
    吴宏伊,童玲,陈云坪,2012.基于中国通量网的MODIS短波反照率验证与分析[J].遥感技术与应用,27(5):735-739.
    肖登攀,陶福禄,Moiwo J P,2011.全球变化下地表反照率研究进展[J].地球科学进展,26(11):1217-1224.
    颜宏,魏丽,陈玉春,等,1987.地表反照率和土壤含水量的综合估算及其在地面加热场计算中的影响[J].高原气象,6(2),255-266.
    叶笃正,高由禧,1979.青藏高原气象学[M].北京:科学出版社.
    于涵,张杰,刘诗梦,2018.基于CERES卫星资料的青藏高原有效辐射变化规律[J].高原气象,37(1):106-122.DOI:10.7522/j.issn.1000-0534.2017.00045.
    余予,陈洪滨,夏祥鳌,等,2010.青藏高原纳木错站地表反照率观测与MODIS资料的对比分析[J].高原气象,29(2):260-267.
    章基嘉,朱抱真,朱福康,等,1988.青藏高原气象学进展[M].北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700