用户名: 密码: 验证码:
多电极阵列微流控芯片内细胞介电泳运动分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Cell Dielectrophoretic Motion with Microfluidic Device Embedding Multi-electrodes
  • 作者:姚佳烽 ; 姜祝鹏 ; 赵桐 ; 王昊 ; 陈柏 ; 吴洪涛
  • 英文作者:YAO Jia-Feng;JIANG Zhu-Peng;ZHAO Tong;WANG Hao;CHEN Bai;WU Hong-Tao;College of Mechanical & Electrical Engineering,Nanjing University of Aeronautics & Astronautics;Nan Ma Intelligent Manufacturing Research Institute Limited Company;Faculty of Mechanical and Precision Instrument Engineering,Xi`an University of Technology;Department of Anesthesiology,the First Affiliated Hospital of Jinan University;
  • 关键词:介电泳 ; 细胞运动 ; 多电极 ; 复合电场 ; 最优电极组合 ; 微流控芯片
  • 英文关键词:Dielectrophoresis;;Cell motion;;Multi-electrode;;Composite electric field;;Optimal electrode combination;;Microfluidic chip
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:南京航空航天大学机电学院;马鞍山南马智能制造研究所有限公司;西安理工大学机械与精密仪器工程学院;暨南大学附属第一医院;
  • 出版日期:2019-02-15
  • 出版单位:分析化学
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金项目(Nos.51706098,51506175);; 江苏省自然科学基金项目(No.BK20170792);; 广东省科技计划项目(No.2017A020215134)资助~~
  • 语种:中文;
  • 页:FXHX201902009
  • 页数:8
  • CN:02
  • ISSN:22-1125/O6
  • 分类号:62-69
摘要
研究了多电极阵列微流控芯片内不同细胞在介电泳力下的运动特征,对外部形态相同而内部组蛋白不同的两种细胞进行了分离。多电极阵列微流控芯片在流道的5个正方形横截面嵌入电极阵列,每个横截面的一组对边嵌入8根电极,此结构扩大了微流道的尺寸,可以实现细胞在介电泳力的作用下高流量分离。为了研究微流控芯片内细胞运动特征,首先通过电场数值分析,对一个横截面内多电极电场分布进行了计算,得到了最佳电极组合方式,使得电场分布均匀,且介电泳力最大。之后,通过实验分析了在不同频率、多电极复杂电场下,外部形态相同而内部组蛋白不同的人肺部成纤维细胞MRC-5的运动特点。通过对介电泳力的波谱进行分析,得到了野生型(WT)和组蛋白-GFP型(GFP-HT)两种细胞的分离频率为f=30 kHz。最后,在两个入口处通入不同比例的蔗糖(Sucrose)溶液与两种细胞混合液,计算了细胞的分离率。当两个入口的流量比为12∶1时,两种细胞的分离率可以达到93.5%。本研究提出的多电极阵列微流控芯片分离细胞的方法为细胞的高流量快速分离奠定了基础。
        The motion characteristics of different cells in the multi-electrode array microchip were studied under the dielectrophoretic force,and the two cells with the same external morphology but different internal histone protein were separated. The multi-electrode array microfluidic chip was embedded in the 5 square cross section of the channel,and 8 electrodes were embedded on each side of the cross section. The structure enlarged the size of the microfluidic channel,which was beneficial for the high flow separation of the cells under the action of the dielectrophoretic force. To study the characteristics of cell motion in the microfluidic device,the electric field distribution in a cross-section was calculated,and the optimal electrode combination pattern was obtained,which generated a uniform electric field distribution and a greatest the dielectrophoretic force. After that,the motion characteristics of MRC-5 in human lung fibroblasts in different frequencies and complex electric fields at different frequencies and complex electric fields were analyzed. By analyzing the spectrum of the dielectrophoretic force,the separation frequency of the two kinds of cells of wild type (WT)and histone-GFP type was f = 30 kHz,and the separation rate of cell was calculated by adding different proportions of sucrose solution and two cell mixture at two inlets. That was,when the flow-rate ratio of the 2 inlets was 12∶ 1,the separation rate of the two types of cells was 93.5%. The method for cell separation using microfluidic chips provided a basis for the rapid separation of cells in the future.
引文
1 Whitesides G M.Nature,2006,442(7101):368-373
    2 LIN Dong-Guo,LIN Jin-Qiong,LI Pei-Wen,YANG Na,XU Bang-Lao,LIU Da-Yu.Chinese J.Anal.Chem.,2018,46(1):113-120林冬果,林锦琼,李佩文,杨娜,徐邦牢,刘大渔.分析化学,2018,46(1):113-120
    3 Guo J H.Anal.Chem.,2016,88(24):11986-11989
    4 YANG Li-Jun,ZHU Li,LU Bao-Chun,ZHANG Wei-Yi,Chinese J.Anal.Chem.,2017,45(6):922-930杨利军,朱丽,陆宝春,章维一.分析化学,2017,45(6):922-930
    5 LIN Bing-Cheng.Laboratory on a Microfluidic Chip.Beijing:Science Press,2013:456-463林炳承.微纳流控芯片实验室.北京:科学出版社,2013:456-463
    6 Bonner W,Hulett H,Sweet R,Herzenberg L.Rev.Sci.Instrum.,1972,43(3):404-409
    7 Zhang J,Yan S,Yuan D,Alici G,Nguyen N T,Warkiani M E,Li W.Lab Chip,2016,16(1):10-34
    8 Shim S,Stemke-Hale K,Tsimberidou A M,Noshari J,Anderson T E,Gascoyne P R.Biomicrofluidics,2013,7(1):11807
    9 Pethig R.Biomicrofluidics,2010,4(2):022811
    10 Yan S,Zhang J,Chen H,Yuan D,Alici G,Du H,Zhu Y,Li W.Biomed.Microdevices,2016,18(4):1-9
    11 HUANG Shuang,HE Yong-Qing,JIAO Feng.Chinese J.Anal.Chem.,2017,45(8):1238-1247黄爽,何永清,焦凤.分析化学,2017,45(8):1238-1247
    12 Alvarez N J,Jeppesen C,Yvind K,Mortensen N A,Hassager O.Lab Chip,2013,13(5):928-939
    13 Xiang N,Zhang X,Dai Q,Cheng J,Chen K,Ni Z.Lab Chip,2016,16(14):2626-2635
    14 Skotis G,Cumming D,Roberts J,Riehle M,Bernassau A.Lab Chip,2015,15(3):802-810
    15 Gao J,Sin M L,Liu T,Gau V,Liao J C,Wong P K.Lab Chip,2011,11(10):1770-1775
    16 Xiang N,Huang D,Cheng J,Chen K,Zhang X J,Tang W L,Ni Z H.Appl.Phys.Express,2016,9(2):027001
    17 Gascoyne P R,Shim S.Cancers(Basel),2014,6(1):545-579
    18 Yao J,Kodera T,Obara H,Sugawara M,Takei M.Biomicrofluidics,2015,9(4):044129
    19 Yao J,Obara H,Sapkota A,Takei M.Biomicrofluidics,2016,10(2):024105
    20 Yao J,Sugawara M,Obara H,Mizutani T,Takei M.IEEE Trans.Biomed.Circuits Syst.,2017,11(6):1450-1458
    21 Haeberle S,Zengerle R.Lab Chip,2007,7(9):1094-1110
    22 Mizutani T,Takeda K,Haga H,Todo M,Kawabata K.Histochem.Cell Biol.,2014,141(5):473-481
    23 Mahmood T,Yang P C.North Am.J.Med.Sci.,2012,4(9):429-434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700