用户名: 密码: 验证码:
天山一号冰川表面冰尘和底部沉积层中可培养酵母菌系统发育类群的分布及生态生理特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phylogeny and diversity of culturable yeasts in supraglacial cryoconite and subglacial sediments of the Glacier No.1 in Tianshan Mountains
  • 作者:张瑞蕊 ; 薛梅 ; 李宁宁 ; 靳亚梅 ; 魏小晶 ; 倪永清
  • 英文作者:Ruirui Zhang;Mei Xue;Ningning Li;Yamei Jin;Xiaojing Wei;Yongqing Ni;School of Life Sciences, Shihezi University;School of Food Sciences, Shihezi University;
  • 关键词:天山冰川 ; 冰尘 ; 底部沉积层 ; 可培养酵母 ; 多样性 ; 产酶活性
  • 英文关键词:glaciers in the Tianshan Mountains;;cryocnite;;subglacial sediments;;culturable yeasts;;diversity;;enzyme activity
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:石河子大学生命科学学院;石河子大学食品学院;
  • 出版日期:2018-11-29 17:13
  • 出版单位:微生物学报
  • 年:2019
  • 期:v.59;No.346
  • 基金:国家自然科学基金(40961002,41140009,41271268)~~
  • 语种:中文;
  • 页:WSXB201902012
  • 页数:15
  • CN:02
  • ISSN:11-1995/Q
  • 分类号:130-144
摘要
【目的】揭示乌鲁木齐河源天山1号冰川表面冰尘(CS)和底部沉积层(DS)可培养酵母菌系统发育类群及其结构组成差异,分析低温酵母菌代表菌株之间的生态、生理生化特性。【方法】利用4种培养基分离天山1号冰川可培养酵母菌,采用ITS基因序列分析确定菌种的系统进化地位。对分离菌株的最适生长温度、耐盐性和产酶等生态、生理学特性进行分析。【结果】从冰尘和底部沉积层中共分离出152株酵母菌菌株,通过ITSrRNA基因序列的NCBI比对和Rep-PCR指纹分型,结果表明酵母菌类群包括担子菌门(Basidiomycota)和子囊菌(Ascomycota),分属于14个属26种,其中担子菌门柄锈菌亚门(Pucciniomycotina)88株、伞菌亚门(Agariomycotina)24株,子囊菌门40株,冰川广布酵母菌Vishniacozyma victoriae为优势菌株(占比21.84%)。17种酵母的最适生长温度为15°C、2种为10°C、6种为20°C。25株代表酵母菌株产酶分析显示,产脂肪酶、淀粉酶、蛋白酶菌株分别为11株、11株、5株,6株3种酶都不产。【结论】天山1号冰川冰尘及底部沉积层可培养低温酵母系统发育类群结构存在差异,产低温酶活性高、稳定性好,为今后冰川低温酵母菌的研究提供有价值的数据支持。
        [Objective] The objective of this study was to elucidate the phylogenetic group and diversity of structure composition of culturable yeasts isolated from supraglacial cryoconites and subglacial sediments of the Glacier No.1 in Tianshan Mountains and to analyze the physiological and biochemical characteristics of different low temperature yeasts. [Methods] Culturable yeasts were detected on rose Bengal agar(RB), clichloran 18% glycerol agar(DG18), malt extract yeast extract soytone agar(MYP) and yeast-malt extract agar(YMP) media. The phylogenetic position of yeasts was determined by internal transcribed spacer(ITS) gene sequence. The physiological and biochemical tests included optimal growth temperature, salinity tolerance and enzymatic activities. [Results] A total of 152 culturable yeasts were isolated from supraglacial cryoconites and subglacial sediments. The results of National Center of Biotechnology Information(NCBI) alignment of internal transcribed spacer(ITS) rRNA gene sequence and Rep-PCR fingerprinting showed that the yeast groups included Basidiomycota and Ascomycota, belonging to 14 genera and 26 species. Among them, 88 strains were Pucciniomycotina, 24 strains were Agariomycotina, and 40 strains were Ascomycota. Vishniacozyma victoriae was the dominant strain(21.84%). The optimum growth temperature for 17 yeasts was at 15 ℃, 2 strains at 10 ℃ and 6 strains at 20 ℃. The analysis of lipase, protease and amylase activity showed that 11 of the 25 low temperature yeasts produced lipase and 11 produced amylase and 5 produced protease, 6 strains did not produce any enzymes. [Conclusion] The results of this study provide valuable data for the research of community structure and physiological characteristics of cryogenic yeasts in glaciers.
引文
[1]Buzzini P,Branda E,Goretti M.Psychrophilic yeasts from worldwide glacial habitats:diversity,adaptation strategies and biotechnological potential.FEMS Microbiology Ecology,2012,82(2):217-241.
    [2]Grum-Grzhimaylo AA,Georgieva ML,Bondarenko SA.On the diversity of fungi from sod a soils.Fungal Diversity,2016,76(1):27-74.
    [3]Sonjak S.Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns:Botanica Marina.Botanica Marina,2005,43(1):57-79.
    [4]Marc-André L,Cletus PK,Jack WF.Biodiversity and Ecophysiology of Yeasts.Springer Berlin Heidelberg,2006.
    [5]Purnima S,Utpal R,Masaharu T.Characterisation of yeast and filamentous fungi from Br??ggerbreen glaciers,Svalbard.Polar Record,2016,52(4):442-449.
    [6]Skidmore M,Anderson SP,Sharp M.Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes.Applied&Environmental Microbiology,2005,71(11):6986-6997.
    [7]Schadt CW,Martin AP,Lipson DA,Schmidt SK.Seasonal dynamics of previously unknown fungal lineages in tundra soils.Science,2003,301(5638):1359
    [8]Vidstrand P,Follin S,Selroos JO.Modeling of groundwater flow at depth in crystalline rock beneath a moving ice-sheet margin,exemplified by the Fennoscandian Shield,Sweden.Hydrogeology Journal,2013,21(1):239-255.
    [9]Selbmann L,Zucconi L,Onofri S.Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats.Fungal Biology,2014,118(1):61.
    [10]Vincent WF.Evolutionary origins of Antarctic microbiota:invasion,selection and endemism.Antarctic Science,2000,12(3):374-385.
    [11]Turchetti B,Goretti M,Branda E.Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers.Fems Microbiology Ecology,2013,86(2):327-340.
    [12]Liu SY,Yao XJ,Guo WQ,Xu JL,Shangguan DH,Wei JF,Bao WJ,Wu LZ.The contemporary glaciers in China based on the Second Chinese Glacier Inventory.Acta Geographica Sinica,2015,70(1):3-16.(in Chinese)刘时银,姚晓军,郭万钦,许君利,上官冬辉,魏俊锋,鲍伟佳,吴立宗.基于第二次冰川编目的中国冰川现状.地理学报,2015,70(1):3-16.
    [13]Sangorrín MP,Lopes CA,Vero S.Cold-Adapted Yeasts as Biocontrol Agents:Biodiversity,Adaptation Strategies and Biocontrol Potential.Cold-adapted Yeasts.2014:441-464.
    [14]Liu Z,Li ZQ.Factors affecting the variation of glacier surface runoff-coefficient-A case study of Urumqi No.1Glacier.Advances in Earth Science,2016,31(1):103-112.(in Chinese)刘铸,李忠勤.近期冰川表面径流系数变化的影响因素-以天山乌鲁木齐河源1号冰川为例.地球科学进展,2016,31(1):103-112.
    [15]Wang WD,Zhang GF,Li ZQ.Study on equilibrium line altitude and its relationship with climate change of Urumqi Glacier No.1 in Tianshan mountains in recent 52 years.Journal of Natural Resources.2015(1):124-132.(in Chinese)王卫东,张国飞,李忠勤.近52年天山乌鲁木齐河源1号冰川平衡线高度及其与气候变化关系研究.自然资源学报,2015(1):124-132.
    [16]Zhang W,Zhang GS,Liu GX,Li T,Li ZQ,An LZ.The contemporary glaciers in China based on the Second Chinese Glacier Inventory.Journal of Glaciology and Geocryology.2010,32(5):906-913.(in Chinese)张威,章高森,刘光琇,李田,李忠勤,安黎哲.天山乌鲁木齐河源1号冰川中真核微生物多样性分布及时空变化研究.冰川冻土,2010,32(5):906-913.
    [17]Wang XX,Gu YL,Ni XJ.Composition and phylogeny of fungal community in supraglacial cryoconitend subglacial sediments of the Rümqi River in the Glacier No.1 in the head waters of the Tianshan Mountains.Journal of Glaciology and Geocryology,2017,39(4):781-791.(in Chinese)王叙贤,顾燕玲,倪雪姣.天山乌源1号冰川表面冰尘及底部沉积层真菌群落结构比较及其系统发育分析.冰川冻土,2017,39(4):781-791.
    [18]Garcia VD,Brizzio S,Broock MR.Yeasts from glacial ice of Patagonian Andes,Argentina.Fems Microbiology Ecology,2012,82(2):540-550.
    [19]Stibal M,Wadham JL,Lis GP.Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources.Global Change Biology,2012,18(11):3332-3345.
    [20]Bergamo RF,Novo MT,Veríssimo RV.Differentiation of Acidithiobacillus ferrooxidans and A.thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis.Research in Microbiology,2004,155(7):559.
    [21]Pathan AK,Bhadra B,Begum Z.Diversity of yeasts from puddles in the vicinity of midre Lovénbreen Glacier,Arctic and bioprospecting for enzymes and fatty acids.Current Microbiology,2010,60(4):307-314.
    [22]Brizzio S,Turchetti B,Libkind D,Buzzini P.Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia(Argentina).Canadian Journal of Microbiology,2007,53(4):519-525.
    [23]García VD,Brizzio S,Libkind D.Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia,Argentina.FEMS Microbiology Ecology,2007,59(2):331-341.
    [24]Buzzini P,Martini A.Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments.Journal of Applied Microbiology,2002,93(6):1020.
    [25]Liu XZ,Wang QM,G?ker M.Towards an integrated phylogenetic classification of the Tremellomycetes.Studies in Mycology,2015,81(81):85-147.
    [26]Xu H,Li ZQ,Takeuchi N,Zhang XY,Zhang GF.Characteristics and formation analysis of the cryoconite granules,take the Urumqi Glacier No.1 as an example.Journal of Glaciology and Geocryology.2013,35(5):1118-1125.(in Chinese)许慧,李忠勤,Nozomu Takeuchi,张晓宇,张国飞.冰尘结构特征及形成分析--以乌鲁木齐河源1号冰川为例.冰川冻土,2013,35(5):1118-1125.
    [27]Hodson A,Anesio AM,Tranter M.Glacial Ecosystems.Ecological Monographs.2008,78(1):41-67.
    [28]Stibal M,Tranter M,Benning LG.Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input.Environmental Microbiology,2010,10(8):2172-2178.
    [29]Anderson SP.Biogeochemistry of glacial landscape systems.Annual Review of Earth&Planetary Sciences,2007,35(35):375-399.
    [30]de GV,Zalar P,Brizzio S.Cryptococcus species(Tremellales)from glacial biomes in the southern(Patagonia)and northern(Svalbard)hemispheres.FEMS Microbiology Ecology,2012,82(2):523-539.
    [31]Ma JM,Belloch C,Galiana M.Polyphasic taxonomy of a novel yeast isolated from Antarctic environment;description of Cryptococcus victoriae,sp.nov.Systematic&Applied Microbiology,1999,22(1):97-105.
    [32]Butinar L,Spencer-Martins I,Gunde-Cimerman N.Yeasts in high Arctic glaciers:the discovery of a new habitat for eukaryotic microorganisms.Antonie Van Leeuwenhoek,2007,91(3):277-289.
    [33]Gadanho M,Almeida JM,Sampaio JP.Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR.Antonie Van Leeuwenhoek,2003,84(3):217-227.
    [34]Singh P,Singh SM.Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard,Arctic.Polar Biology,2012,35(4):575-583.
    [35]Edwards A,Douglas B,Anesio AM.A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard.Fungal Ecology,2013,6(2):168-176.
    [36]Thevenieau F,Nicaud JM,Gaillardin C.Yeast biotechnology:diversity and applications.Yeast Biotechnology Diversity&Applications,2009:590-613.
    [37]Jagannadham MV,Chattopadhyay MK,Subbalakshmi C.Carotenoids of an Antarctic psychrotolerant bacterium,Sphingobacterium antarcticus,and a mesophilic bacterium,Sphingobacterium multivorum.Archives of Microbiology,2000,173(5-6):418-424.
    [38]Zawierucha K,Kolicka M,Takeuchi N.What animals can live in cryoconite holes?A faunal review.Journal of Zoology,2015,295(3):159-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700