用户名: 密码: 验证码:
水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water
  • 作者:史久林 ; 许锦 ; 罗宁宁 ; 王庆 ; 张余宝 ; 张巍巍 ; 何兴道
  • 英文作者:Shi Jiu-Lin;Xu Jin;Luo Ning-Ning;Wang Qing;Zhang Yu-Bao;Zhang Wei-Wei;He Xing-Dao;Jiangxi Engineering Laboratory for Optoelectronics Testing Technology,Nanchang Hangkong University;Key Laboratory of Nondestructive Test (Ministry of Education),Nanchang Hangkong University;
  • 关键词:受激拉曼散射 ; 受激布里渊散射 ; 能量放大 ; 热散焦
  • 英文关键词:stimulated Raman scattering;;stimulated Brillouin scattering;;energy amplification;;thermal defocusing
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南昌航空大学江西省光电检测技术工程实验室;南昌航空大学无损检测技术教育部重点实验室;
  • 出版日期:2019-02-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:41776111,41666004,61865013,41576033,61665008);; 江西省自然科学基金(批准号:20171BAB202039,20161BBH80036);; 江西省杰出青年基金(批准号:20171BCB23053);; 航空基金(批准号:2016ZD56007,2016ZD56006)资助的课题~~
  • 语种:中文;
  • 页:WLXB201904020
  • 页数:6
  • CN:04
  • ISSN:11-1958/O4
  • 分类号:232-237
摘要
为提高液体介质中受激拉曼散射的输出能量,提出了通过温度调控来抑制受激布里渊散射的方法,设计了532 nm多纵模宽带脉冲激光泵浦的受激拉曼散射发生系统,测量了不同温度下水中前向受激拉曼散射及后向受激布里渊散射的输出能量,分析了水温、泵浦激光线宽及热散焦效应对受激拉曼散射输出能量影响的物理机制.实验结果表明:通过降低水温可实现对受激布里渊散射过程的有效抑制,同时减小热散焦效应带来的光束畸变,从而有效提高受激拉曼散射的输出能量.研究结果对液体介质中的受激拉曼散射多波长转换具有重要意义.
        Stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) are two kinds of emblematic inelastic scattering processes resulting from the interaction of high-intensity laser with matter. Generally,competition between SBS and SRS is a common phenomenon in many substances. In liquid or high-pressure gas, if a single longitudinal mode laser is used as a pump source, both SBS and SRS can be excited, but the SBS will become very strong due to higher gain and optical phase conjugation. In comparison, the SRS gain is typically 2 orders of magnitude smaller than the SBS gain so that most of the pump laser energy is spent on the SBS and the SRS is greatly suppressed. To improve the output energy of SRS in liquid medium, a method of suppressing the SBS process by controlling temperature of medium is proposed. The SRS generation system using broadband pulse laser of 532 nm in wavelength as a pumping source is designed, the output energy of forward SRS(FSRS) and backward SBS(BSBS) in water with different temperatures are measured, and the physical mechanisms of the influences of water temperature, pumping linewidth and thermal defocusing on the output energy of SRS are analyzed. The experimental results indicate that by reducing the water temperature,the SBS process can be significantly suppressed, and the beam distortion caused by thermal defocusing effect can be reduced, thus effectively improving the output energy of SRS. Unlike the single longitudinal mode laser,when the pump source is handled in multiple longitudinal modes with a wide linewidth, the gain of FSRS is higher than that of the backward SRS(BSRS). Meanwhile, since the SBS gain coefficient is restricted by the linewidth of the pump laser, the FSRS process is dominant and both backward SBS and BSRS are significantly suppressed. It is necessary to state that none of the influence of backward SRS, self-focusing, optical breakdown and other non-linear effects on the output energy of SRS is considered in this paper, and only the effectiveness of reducing temperature to improve the energy output of forward SRS is verified from the perspective of temperature change. The results are of great significance for the multi-wavelength conversion of SRS in liquid medium.
引文
[1]BoydRW2008NonlinearOptics(ThirdEdition)(Burlington:Academic Press)pp 429-471
    [2]PenzkoferA,LaubereauA,KaiserW1979Prog. Quant.Electron. 6 55
    [3] PasiskeviciusV,FragemannA,LaurellF,ButkusR,Smilgevicius V, Piskarskas A 2003 Appl. Phys. Lett. 82 325
    [4] Kalosha V P, Herrmann J 2000 Phys. Rev. Lett. 85 1226
    [5]FindeisenJ,EichlerHJ,Kaminskii AA1998Nonlinear Optics 98:Materials, Fundamentals and Applications Topical Meeting(Cat.No.98CH36244),USA,August10-14,1998p381
    [6]Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao T D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208(in Chinese)[黄衍堂,彭隆祥,庄世坚,李强龙,廖廷俤,许灿华,段亚凡2017物理学报66 244208]
    [7]VasaNJ,HatadaA,NakazonoS,OkiY,MaedaM2002Appl. Opt. 41 2328
    [8]Chen W, Chen X G, Shi J L, He X D, Mo X F, Liu J 2013Acta Phys. Sin. 62 104213(in Chinese)[陈蔚,陈学岗,史久林,何兴道,莫小凤,刘娟2013物理学报62 104213]
    [9] Woodbury E J, Ng W K 1962 Proc. Inst. Rad. Eng. 50 2367
    [10] Ganot Y, Bar I 2015 Appl. Phys. Lett. 107 131108
    [11]Ganot Y, Shrenkel S, Barmashenko B D, Bar I 2014 Appl.Phys. Lett. 105 061107
    [12]Helle M H, Jones T G, Penano J R, Kaganovich D, Ting A2013 Appl. Phys. Lett. 103 121101
    [13]Shi J, Chen W, Mo X, Liu J, He X, Yang K 2012 Opt. Lett.37 2988
    [14]WalshCJ,VilleneuveDM,BaldisHA1984Phys. Rev.Lett. 53 1445
    [15] Snow J B, Qian S X, Chang R K 1985 Opt. Lett. 10 37
    [16]Yehud L B, Belker D, Ravnitzki G, Ishaaya A A 2014 Opt.Lett. 39 1026
    [17]Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W,He X, Yang K, Liu D 2012 Appl. Phys. B 108 717
    [18]He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod.Opt. 59 1410
    [19]Shi J, Ouyang M, Chen X, Liu B, Xu Y, Jing H, Liu D 2009Opt. Lett. 34 977
    [20]Liu D, Shi J, Ouyang M, Chen X, Liu J, He X 2009 Phys.Rev. A 80 033808
    [21]Shi J L, Liu J, Li S J, Jian X, Jian L, Wei F, Ke Y, He X D2011 J. Opt. 13 075201
    [22]DamzenMJ,Vlad VI,Babin V,Mocofanescu A 2003 Stimulated Brillouin Scattering:Fundamentals and Applications(Bristol:Institute of Physics Pub.)pp 39-50
    [23] Colles M J 1969 Opt. Commun. 1 169
    [24]Richerzhagen B, Delacretaz G, Salathe R P 1996 Opt. Eng.35 2058
    [25] Abbate G, Bernini U, Ragozzino E, Somma F 1978 J. Phy.D:Appl. Phys. 11 1167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700