用户名: 密码: 验证码:
微囊藻生物质性质对超临界水气化产氢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influences of Biomass Characteristics on Gasification of Cyanobacterial Biomass in Supercritical Water
  • 作者:张会文 ; 张晓曼 ; 孙淑雲 ; 肖航 ; 李敏 ; 张春雷 ; 周海云
  • 英文作者:ZHANG Huiwen;ZHANG Xiaoman;SUN Shuyun;XIAO Hang;LI Min;ZHANG Chunlei;ZHOU Haiyun;Municipal Engineering Department,Anhui University of Technology;Nanjing Hehai Environment Research Institue Co.Ltd;College of Environment,Hohai University;Jiangsu Academy of Environmental Sciences;
  • 关键词:微囊藻生物质 ; 超临界水气化 ; 氢气 ; 含水率 ; 腐解程度
  • 英文关键词:cyanobacterial;;supercritical water gasification;;hydrogen;;moisture content;;natural decomposition
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:安徽工业大学建筑工程学院市政工程系;南京河海环境研究院有限公司;河海大学环境学院;江苏省环境科学研究院;
  • 出版日期:2019-01-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金(51808003);; 安徽省自然科学基金(1808085QE175);; 安徽工业大学青年教师科研基金资助项目(QZ201616);; 江苏省环保科研课题(2016013)
  • 语种:中文;
  • 页:FJKS201901019
  • 页数:7
  • CN:01
  • ISSN:42-1245/X
  • 分类号:133-139
摘要
微囊藻水华的常态化暴发致使每年产生大量难处理的高含水率废弃微囊藻生物质,超临界水气化技术可越过高能耗的脱水工艺实现其减量化、无害化处理及资源化利用。该文聚焦微囊藻生物质作为超临界水气化反应原料、在堆积及自然腐解条件下的初始含水率及腐解程度变化,明确生物质原料初始含水率及腐解程度等条件与超临界水气化产物的质量分布规律、产气产氢特性、以及能耗分析的作用关系。70%~96.15%范围内的含水率变化对微囊藻生物质SCWG产氢存在一定影响,在其脱水能耗允许程度内降低含水率能够有效改善处理效率及能源转化效率;微囊藻生物质15 d腐解程度时TOC约降低15%,而该阶段的产氢效率能够稳定维持在3.0 mol/kg左右。研究成果将为今后微囊藻生物质超临界水气化处理的高能效产业化应用提供必要的理论支撑依据。
        Cyanobacterial bloom broken out in freshwater lakes always bring about huge amount of waste of intractable algae biomass rich in water content.This paper introduces a technology of supercritical water gasification(SCWG) with which mass reduction by dewatering and resource utilization of the algae biomass can be realized.The technology focuses on the use of cyanobacterial algae mass as materials of SCWG,and the change of moisture content and natural decomposition of raw cyanobacterial biomass.Laboratory experiment was conducted exploring the effects of raw feedstock characteristics on the mass distribution of reaction products,the characteristics of gasification and the analysis of energy consumption.The results indicated that H2 production of cyanobacterial SCWG was affected by changing moisture content of raw biomass in the range of 70%~96.15%,and lowering the moisture content of algae biomass by dewatering practices within the allowed limit of energy consumption would result in higher efficiency of treatment and energy conversion.Furthermore,TOC was reduced by 15%as the fresh cyanobaceria underwent 15 d natural decaying and decomposition,but the efficiency of H2 yield could hold steady at about 3.0 mol/kg.In conclusion,the optimization of efficiency of energy conversion in the process of SCWG would boost the application of SCWG of cyanobacterial biomass and furthermore,the industrialization in the future.
引文
[1]Home A,Goldman C.Limonology[M].2nd.New York:McGraw Hill Inc,1994.
    [2]J A C Committee.Jiangsu Almanac 2010[M].Nanjing:Nanjing University Press.
    [3]García Jarana M,Kings I,Sánchez Oneto J,et al.Supercritical water oxidation of nitrogen compounds with multi-injection of oxygen[J].The Journal of Supercritical Fluids,2013,80:23-29.
    [4]Modell M.Gasification and liquefaction of forest products in supercritical water[J].Fundamentals of Thermochemical Biomass Conversion,1985:95-119.
    [5]Alba L,Torri C,SamorìC,et al.Hydrothermal treatment(HTT)of microalgae:evaluation of the process as conversion method in an algae biorefinery concept[J].Energy&Fuels,2012,26(1):642-657.
    [6]Guan Q,Savage P,Wei C.Gasification of alga Nannochloropsis sp.in supercritical water[J].The Journal of Supercritical Fluids,2011,61:139-145.
    [7]Brown T M,Duan P,Savage P E.Hydrothermal liquefaction and gasification of Nannochloropsis sp[J].Energy&Fuels,2010,24(6):3639-3646.
    [8]Zhang H,Zhu W,Xu Z,et al.Gasification of cyanobacteria in supercritical water[J].Environmental Technology,2014,35(22):2788-2795.
    [9]Zhang H,Zhang X.Phase behavior and stabilization of phosphorus in sub-and supercritical water gasification of cyanobacteria[J].The Journal of Supercritical Fluids,2017(130):40-46.
    [10]Zhou Y,Kong F,Shi X,et al.Changes in the morphology and polysaccharide content of Microcytis marginata(Cyanobacteria)during flagellate grazing[J].Journal of Phycology,2008,44(3):716-720.
    [11]Muangrat R,Onwudili J,Williams P.Alkaline subcritical water gasification of dairy industry waste(Whey)[J].Bioresource Technology,2011,102(10):6331-6335.
    [12]Hammerschmidt A,Boukis N,Hauer E,et al.Catalytic conversion of waste biomass by hydrothermal treatment[J].Fuel,2011,90(2):555-562.
    [13]Xu Z,Zhu W,Htar S.Partial oxidative gasification of municipal sludge in subcritical and supercritical water[J].Environmental Technology,2011,33(1):1-7.
    [14]Ro K S,Cantrell K,Elliott D,et al.Catalytic wet gasification of municipal and animalwastes[J].Industrial&Engineering Chemistry Research,2007,46(26):8839-8845.
    [15]Lu Y,Guo L,Zhang X,et al.Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water[J].Chemical Engineering Journal,2007,131(1/2/3):233-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700