用户名: 密码: 验证码:
14 ka以来苦海沉积物地球化学记录及其古环境意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemistry Record and Their Environmental Implications during the Past 14 ka in Kuhai Lake,NE Tibetan Plateau
  • 作者:胡砚泊 ; Bernd ; Wünnemann ; 张永战 ; 晏达达
  • 英文作者:HU YanBo;Bernd Wünnemann;ZHANG YongZhan;YAN DaDa;School of Geographic and Oceanographic Sciences,Nanjing University;Institute of Estuarine and Coastal Research,East China Normal University;Department of Earth Sciences,Free University Berlin;Key Laboratory of Coast & Island Development (Nanjing University) ,Ministry of Education;
  • 关键词:X射线荧光光谱(XRF) ; 主成分分析(PCA) ; 元素比值 ; 青藏高原 ; 湖泊水位
  • 英文关键词:X-Ray Fluorescence(XRF);;principal component analysis(PCA);;element ratios;;Tibetan Plateau;;lake level
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:南京大学地理与海洋科学学院;华东师范大学河口海岸科学研究院;Department of Earth Sciences,Free University Berlin;南京大学海岸与海岛开发教育部重点实验室;
  • 出版日期:2018-05-25 12:42
  • 出版单位:沉积学报
  • 年:2019
  • 期:v.37
  • 基金:“外专千人计划”项目(组厅字[2014]5号);; 德国基金会项目(WU270-10.3);; 国家自然科学基金项目(40971003);; 华东师范大学人才队伍建设项目(20172010);; 中国博士后科学基金(2018M630415)~~
  • 语种:中文;
  • 页:CJXB201901011
  • 页数:11
  • CN:01
  • ISSN:62-1038/P
  • 分类号:107-117
摘要
对青藏高原东北部封闭咸水湖泊苦海水深最深处KH17钻孔进行沉积物粒度、烧失量和X射线荧光光谱(XRF)测试及XRF测试结果的主成分分析(PCA),以揭示14 ka以来苦海沉积物特征及其所反映的搬运与沉积过程变化,反演湖泊流域古环境。研究结果表明:第一主成分(PC1)主要包括Ti、Fe、K等元素,指示径流输入强弱;第二主成分(PC2)中载荷值较大的Ca和Sr与碳酸盐含量相关,指示湖泊蒸发强弱; Zr(第三主成分中载荷值最大)与砂组分、Rb与黏土组分含量相关,分别指示风力输入粗颗粒物质和径流输入细颗粒物质情况,其比值可反映化学风化弱强; Fe/Mn、Sr/Ca也能较好地指示沉积物氧化还原环境、湖水盐度和水位情况。基于上述记录所建立的古环境演变重建结果显示:13.6~13.0 ka B.P.苦海水位较低,径流输入相对强; 13.0~11.5 ka B.P.受新仙女木事件影响,环境干旱且温度极低,风力作用强,输入物质多;早全新世升温显著,蒸发作用强,内生碳酸盐沉积增多,湖泊水位增加缓慢,中全新世期间达到最高水位; 5.3 ka B.P.以后,湖泊经历干旱时期,盐度与碳酸盐沉积增加; 2.7 ka B.P.以来水分供给波动,湖泊水位显著振荡。
        Lake basins on the northeastern Tibetan Plateau are regarded as important archives for the reconstruction of environmental and climate changes during the Upper Quaternary. Lake deposits serve as ideal indicators of various transport and depositional processes in changing hydro-climatic settings. Understanding such dynamic processes is of crucial interest when deciphering the process-response behavior of lakes from their sedimentary characteristics over time. The closed saline Kuhai Lake is an ideal location for unraveling sediment dynamics and related lake level changes during the last 14 ka B.P.,as revealed by sediment core KH17( around 7 m long) retrieved from the deepest part of the lake basin. Sediment grain size,loss on ignition( LOI) and X-ray fluorescence( XRF) were used to determine such depositional and transportation processes. Principal component analysis( PCA) shows that PC1,characterized by high positive loadings of K,Ti,Mn,Fe and Rb,is related to the detrital material transported by inflowing rivers. Ca and Sr in PC2 have high correlation coefficients indicating the varying intensity of local evaporation. Zr( high loadings on PC3) and Rb are related to coarse and fine sediment components respectively,which are mainly transported by wind and suspended load of inflows. The Zr/Rb ratio was used to judge the intensity of geochemical weathering. Fe/Mn and Sr/Ca indicate redox conditions and salinity,which are related to lake level changes. Based on the proxies,the environmental history over the past 14 ka was reconstructed as follows. During 13.6 ~ 13 ka B.P.,the Kuhai Lake Basin was covered by a shallow water body,and strongly influenced by inflow variations. The Younger Dryas interval between 13 and 11.5 ka B.P. experienced cold,dry conditions and increased aeolian transport,which influenced the depositional environment. A 500-year warm and wet intermediate phase may have existed,according to the chronology.Temperatures increased to a large extent since the Early Holocene,which led to increased evaporation and the formation of carbonates following a slight lake level rise. The water depth peaked during the Middle Holocene,reaching the highest level experienced by the lake. After 5.3 ka BP,Kuhai Lake experienced a drier period,with high salinity and varying carbonate precipitation. Water supply has fluctuated greatly since the Late Holocene( 2.7 ka B.P.).
引文
[1] Qiang M R,Song L,Jin Y X,et al. A 16-ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau:hydroclimatic evolution and changes in atmospheric circulation[J].Quaternary Science Reviews,2017,162:72-87.
    [2] Ji J F,Shen J,Balsam W,et al. Asian monsoon oscillations in the northeastern Qinghai–Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments[J]. Earth and Planetary Science Letters,2005,233(1/2):61-70.
    [3]沈吉,刘兴起,Matsumoto R,等.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化[J].中国科学(D辑):地球科学,2004,34(6):582-589.[Shen Ji,Liu Xingqi,Matsumoto R,et al.A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Qinghai Lake[J]. Science China(Seri. D):Earth Sciences,2004,34(6):582-589.]
    [4] Chen F H,Wu D,Chen J H,et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs:a review of conflicting proxies[J]. Quaternary Science Reviews,2016,154:111-129.
    [5]张彭熹,张保珍,杨文博.青海湖冰后期水体环境的演化[J].沉积学报,1988,6(2):1-14.[Zhang Pengxi,Zhang Baozhen,Yang Wenbo. The evolution of the water body environment in Qinghai Lake since the postglacial age[J]. Acta Sedimentologica Sinica,1988,6(2):1-14.]
    [6] Jin Z D,An Z S,Yu J M,et al. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial[J]. Quaternary Science Reviews,2015,122:63-73.
    [7] Liu W G,Liu H,Wang Z,et al. Hydrogen isotopic compositions of long-chain leaf wax n-alkanes in Lake Qinghai sediments record palaeohydrological variations during the past 12 ka[J]. Quaternary International,2017,449:67-74.
    [8] Wischnewski J,Mischke S,Wang Y B,et al. Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial-a multi-proxy,dual-site approach comparing terrestrial and aquatic signals[J]. Quaternary Science Reviews,2011,30(1/2):82-97.
    [9] Mischke S,Zhang C J,B9rner A,et al. Lateglacial and Holocene variation in aeolian sediment flux over the northeastern Tibetan Plateau recorded by laminated sediments of a saline meromictic lake[J].Journal of Quaternary Science,2010,25(2):162-177.
    [10] Sun Q F,Colin C,Liu Z F,et al. Climate changes of the northeastern Tibetan Plateau since the late glaciation inferred from clay mineralogy of sediments in Kuhai Lake[J]. Quaternary International,2016,440:24-34.
    [11] Yan D D. Interplay between lake and catchment processes in Kuhai Lake Basin,NE Tibetan Plateau,China,during late holocene[D]. Berlin:Freie Universitt Berlin,2017.
    [12] Dietze E,Wünnemann B,Hartmann K,et al. Early to mid-Holocene lake high-stand sediments at Lake Donggi Cona,northeastern Tibetan Plateau,China[J]. Quaternary Research,2013,79(3):325-336.
    [13] Saini J,Günther F,Aichner B,et al. Climate variability in the past~19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona[J]. Quaternary Science Reviews,2017,157:129-140.
    [14] Opitz S,Wünnemann B,Aichner B,et al. Late Glacial and Holocene development of Lake Donggi Cona,north-eastern Tibetan Plateau,inferred from sedimentological analysis[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2012, 337/338:159-176.
    [15] Yan D D,Wünnemann B. Late Quaternary water depth changes in Hala Lake,northeastern Tibetan Plateau,derived from ostracod assemblages and sediment properties in multiple sediment records[J]. Quaternary Science Reviews,2014,95:95-114.
    [16] Wünnemann B,Wagner J,Zhang Y Z,et al. Implications of diverse sedimentation patterns in Hala Lake,Qinghai Province,China for reconstructing Late Quaternary climate[J]. Journal of Paleolimnology,2012,48(4):725-749.
    [17]张西营,马海州,韩风清,等.德令哈盆地尕海湖DG03孔岩芯矿物组合与古环境变化[J].沉积学报,2007,25(5):767-773.[Zhang Xiying,Ma Haizhou,Han Fengqing,et al. Mineral assemblages and palaeoenvironmental changes of core DG03 of Gahai Lake in Delingha Basin[J]. Acta Sedimentologica Sinica,2007,25(5):767-773.]
    [18]曹广超,马海州,张璞,等. 11.5kaBP以来尕海沉积物氧化物地球化学特征及其环境意义[J].沉积学报,2009,27(2):360-366.[Cao Guangchao,Ma Haizhou,Zhang Pu,et al. Geochemical composition of sediment in Gahai Lake since 11.5 ka BP and its environmental implication[J]. Acta Sedimentologica Sinica,2009,27(2):360-366.]
    [19]李华勇,张虎才,陈光杰,等.云南高原湖泊表层沉积物粒度特征及环境指示意义[J].沉积学报,2017,35(3):499-507.[Li Huayong,Zhang Hucai,Chen Guangjie,et al. The grain size distribution characteristics of surface sediments from plateau lakes in Yunnan province and their environmental significances[J]. Acta Sedimentologica Sinica,2017,35(3):499-507.]
    [20]马龙,吴敬禄,温军会,等.乌梁素海湖泊沉积物粒度特征及其环境指示意义[J].沉积学报,2013,31(4):646-652.[Ma Long,Wu Jinglu,Wen Junhui,et al. Grain size characteristics and its environmental significance of lacustrine sediment recorded in Wuliangsu Lake,Inner Mongolia[J]. Acta Sedimentologica Sinica,2013,31(4):646-652.]
    [21] Ling Y,Dai X Q,Zheng M P,et al. High-resolution geochemical record for the last 1100 yr from Lake Toson,northeastern Tibetan Plateau,and its climatic implications[J]. Quaternary International,2017,doi:10.1016/j.quaint.2017.03.067.
    [22] Xu H,Ai L,Tan L C,et al. Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications[J]. Chemical Geology,2006,235(3/4):262-275.
    [23]郑艳红,周卫健,谢树成.青藏高原东北部全新世泥炭正构烷烃的生物记录[J].沉积学报,2009,27(1):142-146.[Zheng Yanhong,Zhou Weijian,Xie Shucheng. Organism records of Holocene peat n-alkanes in the northeastern Qinghai-Xizang Plateau[J]. Acta Sedimentologica Sinica,2009,27(1):142-146.]
    [24]成艾颖,余俊清,张丽莎,等. XRF岩芯扫描分析方法及其在湖泊沉积研究中的应用[J].盐湖研究,2010,18(2):7-13.[Cheng Aiying,Yu Junqing,Zhang Lisha,et al. XRF core scanning and applications on lake sediments[J]. Journal of Salt Lake Research,2010,18(2):7-13.]
    [25]陈宇亮,郑洪波. XRF岩心扫描在第四纪沉积物研究中的应用[J].海洋地质前沿,2014,30(4):51-59.[Chen Yuliang,Zheng Hongbo. The application of XRF core scanning to Quatermaty sediments[J]. Marine Geology Frontiers,2014,30(4):51-59.]
    [26] van der Woerd J,Tapponnier P,Ryerson F J,et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault(Tibet),from26Al,10Be,and14C dating of riser offsets,and climatic origin of the regional morphology[J]. Geophysical Journal International,2002,148(3):356-388.
    [27] Vandenberghe J,Renssen H,Van Huissteden K,et al. Penetration of Atlantic westerly winds into central and East Asia[J]. Quaternary Science Reviews,2006,25(17/18):2380-2389.
    [28] Bahr A,Jiménez-Espejo F J,Kolasinac N,et al. Deciphering bottom current velocity and paleoclimate signals from contourite deposits in the Gulf of Cádiz during the last 140 kyr:an inorganic geochemical approach[J]. Geochemistry,Geophysics,Geosystems,2014,15(8):3145-3160.
    [29] Weltje G J,Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores:theory and application[J]. Earth and Planetary Science Letters,2008,274(3/4):423-438.
    [30] Hays W L. Statistics[M]. 3rd ed. New York:Holt,Rinehart,and Winston,1981:1-150.
    [31] Davis J C. Statistics and data analysis in geology[M]. New York:Wiley,1973:527-537.
    [32]王君波,朱立平.不同前处理对湖泊沉积物粒度测量结果的影响[J].湖泊科学,2005,17(1):17-23.[Wang Junbo,Zhu Liping. Influence of different pre-treatments on grain-size measurement of lake sediments[J]. Journal of Lake Sciences,2005,17(1):17-23.]
    [33] Blott S J,Pye K. GRADISTAT:a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms,2001,26(11):1237-1248.
    [34] Heiri O,Lotter A F,Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments:reproducibility and comparability of results[J]. Journal of Paleolimnology,2001,25(1):101-110.
    [35] Hartmann K,Wünnemann B. Hydrological changes and Holocene climate variations in NW China,inferred from lake sediments of Juyanze palaeolake by factor analyses[J]. Quaternary International,2009,194(1/2):28-44.
    [36]徐佳佳,贾玉连,赖忠平,等.黄旗海湖泊沉积记录的早中全新世大湖期环境的差异性[J].沉积学报,2012,30(4):731-738.[Xu Jiajia,Jia Yulian,Lai Zhongping,et al. Climate variations during Early to Mid-Holocene in Huangqihai Lake in northern China based on the lake deposit analysis[J]. Acta Sedimentologica Sinica,2012,30(4):731-738.]
    [37]张静然,贾玉连,申洪源,等.湖泊沉积物不同粒级组分的元素含量特征及其环境指示意义:以内蒙古黄旗海为例[J].沉积学报,2011,29(2):381-387.[Zhang Jingran,Jia Yulian,Shen Hongyuan,et al. Element features in different grain size fractions of lacustrine sediment and their environmental implication:A case study of Huangqihai Lake[J]. Acta Sedimentologica Sinica,2011,29(2):381-387.]
    [38]申慧彦,李世杰,于守兵,等.青藏高原兹格塘错沉积物粒度组成及其环境记录的研究[J].第四纪研究,2007,27(4):613-619.[Shen Huiyan,Li Shijie,Yu Shoubing,et al. Grain-size characteristics of sediments from the Zigetang Co Lake,Tibetan Plateau and their environmental implication[J]. Quaternary Sciences,2007,27(4):613-619.]
    [39] Dypvik H,Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U,Zr/Rb and(Zr+Rb)/Sr ratios[J].Chemical Geology,2001,181(1/2/3/4):131-146.
    [40]陈诗越,王苏民,金章东,等.青藏高原中部湖泊沉积物中Zr/Rb值及其环境意义[J].海洋地质与第四纪地质,2003,23(4):35-38.[Chen Shiyue,Wang Sumin,Jin Zhangdong,et al.Variation of Zr/Rb ratios in lacustrine sediments of the Central Tibetan Plateau and its environment implications[J]. Marine Geology&Quaternary Geology,2003,23(4):35-38.]
    [41]谭玲玲,钟巍,薛积彬,等.新疆巴里坤湖全新世湖泊沉积物中Zr/Rb比值特征及其环境意义[J].干旱区资源与环境,2015,29(11):109-114.[Tan Lingling,Zhong Wei,Xue Jibin,et al.Variation of Zr/Rb ratios from the Holocene lacustrine sediments in Balikun Lake in Xinjiang and its environmental implications[J].Journal of Arid Land Resources and Environment,2015,29(11):109-114.]
    [42]吴旭东,沈吉,汪勇.全新世低纬地区古环境演化与北大西洋之间的联系:以湖光岩玛珥湖元素和元素比值记录为例[J].沉积学报,2011,29(5):926-934.[Wu Xudong,Shen Ji,Wang Yong. The Holocene climate linkage between low latitude area and North Atlantic:Case study on element and element ratios of Huguangyan Maar lake[J]. Acta Sedimentologica Sinica,2011,29(5):926-934.]
    [43]沈吉,薛滨,吴敬禄,等.湖泊沉积与环境演化[M].北京:科学出版社,2010:1-476.[Shen Ji,Xue Bin,Wu Jinglu,et al. Lake sediments and environmental evolution[M]. Beijing:Science Press,2010:1-476.]
    [44] Rowell H C,Bopp R F,Peng F,et al. Annually laminated sediments from Onondaga Lake,New York(USA)provide a basis for high-resolution studies of lake degradation and recovery[J]. Journal of Paleolimnology,2015,53(1):107-121.
    [45]李清,康世昌,张强弓,等.青藏高原纳木错湖近150年来气候变化的湖泊沉积记录[J].沉积学报,2014,32(4):669-676.[Li Qing,Kang Shichang,Zhang Qianggong,et al. A 150 year climate change history reconstructed by lake sediment of Nam Co,Tibetan Plateau[J]. Acta Sedimentologica Sinica,2014,32(4):669-676.]
    [46]田庆春,杨太保,张述鑫,等.青藏高原腹地湖泊沉积物磁化率及其环境意义[J].沉积学报,2011,29(1):143-150.[Tian Qingchun,Yang Taibao,Zhang Shuxin,et al. Magnetic susceptibility and its environmental significance of lake sediments in Tibet Plateau[J]. Acta Sedimentologica Sinica,2011,29(1):143-150.]
    [47] Wünnemann B,Yan D D,Andersen N,et al. A 14 ka high-resolution d18O lake record reveals a paradigm shift for the processbased reconstruction of hydroclimate on the northern Tibetan Plateau[J]. Quaternary Science Reviews 2018,200:65-84.
    [48] Yan D D,Wünnemann B,Zhang Y Z,et al. Response of lakecatchment processes to Holocene climate variability:Evidences from the NE Tibetan Plateau[J]. Quaternary Science Reviews2018,201:261-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700