用户名: 密码: 验证码:
喀斯特森林宜昌润楠蒸腾耗水规律及其与环境因子的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationships among transpiration, water consumption and environmental factors of Machilus ichangensis in karst forest
  • 作者:赵文君 ; 舒德远 ; 李成龙 ; 崔迎春 ; 刘延惠 ; 吴鹏 ; 侯贻菊 ; 丁访军
  • 英文作者:ZHAO Wenjun;SHU Deyuan;LI Chenglong;CUI Yingchun;LIU Yanhui;WU Peng;HOU Yiju;DING Fangjun;Guizhou Forestry Academy;
  • 关键词:宜昌润楠 ; 喀斯特森林 ; 蒸腾耗水规律 ; 树干液流 ; 环境因子
  • 英文关键词:Machilus ichangensis;;karst forest;;plant transpiration and water consumption characteristics;;stem sap flow;;environmental factors
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:贵州省林业科学研究院;
  • 出版日期:2018-12-26 16:34
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:v.39;No.211
  • 基金:贵州省重大基础研究项目(黔科合JZ字[2014]200212);; 贵州省科技基金项目(黔科合基础[2018]1096);; 贵州森林生态效益监测与评价科技创新人才团队项目(黔科合人才团队[2014]4004号);; 贵州省林业科学研究院2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5793)
  • 语种:中文;
  • 页:ZNLB201901018
  • 页数:8
  • CN:01
  • ISSN:43-1470/S
  • 分类号:114-121
摘要
使用热扩散液流探针,于2015年7月至2016年8月连续测定茂兰喀斯特森林宜昌润楠的树干液流,同步测定气温、太阳辐射、相对湿度、降水量、土壤含水量和风速等环境因子,分析不同天气、季节、时间尺度下宜昌润楠蒸腾的变化规律及其与环境因子的关系。结果表明:宜昌润楠树干液流速率呈现昼高夜低的变化规律,各季节日间树干液流速率平均值分别是夜间的8.95倍、14.32倍、10.0倍、5.24倍;不同天气下宜昌润楠日蒸腾速率(g·m-2s-1)依次为晴天(41.93±1.43)>阴天(12.73±0.63)>雨天(8.82±0.29);宜昌润楠日均蒸腾量为(5.75±0.31)kg/d,各季节日均蒸腾量(kg/d)表现为夏季(7.57±0.57)>秋季(6.75±0.72)>春季(4.00±0.54)>冬季(2.35±0.20);小时尺度上,各环境因子对蒸腾影响最大的是太阳辐射,影响最小的是降水量、土壤含水量,其中直接影响因素是相对湿度、太阳辐射(除雨天外),间接影响因素是风速(晴天、阴天)和太阳辐射(雨天);日尺度下因季节不同主要影响因子不同,月尺度下主要影响因子只有太阳辐射;随着时间尺度的增大,影响蒸腾的因素减少,且月尺度下环境因子对蒸腾的解释程度最高(78.9%)。各环境因子对蒸腾量的影响程度随天气条件、昼夜、季节、时间尺度等不同而不同,在任何尺度下太阳辐射都是影响蒸腾的主要环境因子
        The thermal diffusion sap flow probes were used to continuously measure the sap flow rate of Machilus ichangensis in the Maolan Karst forest from July 2015 to August 2016, the environmental factors such as temperature, solar radiation, relative humidity, rainfall, soil water content and wind speed were measured synchronously, and the changing characteristics of transpiration and the relations between transpiration and environmental factors under different weather, seasons and time scales were studied. The sap flow velocity showed a changing rule of day high night low; the average daily flow rate in each season was 8.95 times, 14.32 times, 10.0 times and 5.24 times of that of the night, respectively. The average daily transpiration velocity in different weather conditions g/(m2·s), followed by sunny days(41.93±1.43), cloudy days(12.73±0.63), and rainy days(8.82±0.29). The daily average transpiration of M. ichangensis was(5.75±0.31) kg/d; The daily average transpiration of each season was in descending order,(7.57±0.57) kg/d in summer,(6.75±0.72) kg/d in autumn,(4.00±0. 54) kg/d in spring, and(2.35±0.20) kg/d in winter. On the hourly scale, among the environmental factors influencing the transpiration, R(solar radiation) had the largest impact on the transpiration, and P(precipitation) and C(soil water content) had the smallest impact, among them, direct influencing factors were H(relative humidity) and R(solar radiation(except rainy days), while indirect influencing factors were Ws(wind speed on sunny days, rainy days) and R(rainy); the main influencing factors varied due to different seasons on daily scale; only R was the main influencing factor on monthly scale. With the increase of time scale, the factors affected the transpiration were reduced, and the environmental factors in the monthly scale had the highest interpretation of transpiration(78.9%). The influence degree of various environmental factors on transpiration varied with weather conditions, day and night, seasons and time scale, etc. R was the main environmental factor influencing the transpiration at any scale.
引文
[1]孟秦倩,王健,张青峰,等.黄土山地苹果树树体不同方位液流速率分析[J].生态学报,2013,33(11):3555-3661.
    [2]吴旭,陈云明,唐亚坤.黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应[J].植物生态学报,2015,39(12):1176-1187.
    [3]JAMES S A,CLEARWATER M J,MEINZER F C,et al.Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood[J].Tree Physiology,2002,22(4):277-283.
    [4]CLEARWATER M J,MEINZER F C,ANDRADE J L,et al.Potential errors in measurement of nonuniform sap flow using heat dissipation probes[J].Tree Physiology,1999,19(10):681-687.
    [5]CATOVSKY S,HOLBROOK N M,BAZZAZ F A.Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species[J].Canadian Journal of Forest research,2002,32(2):295-309.
    [6]WULLSCHLEGER S D,HANSON P J,TSCHAPLINSKI T J.Whole-plant water flux in understory red maple exposed to altered precipitation regimes[J].Tree Physiology,1998,18(2):71-79.
    [7]GRANIER A.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J].Tree Physiology,1987,3(4):309-320.
    [8]张振振,赵平,倪广艳,等.华南丘陵植被恢复先锋树种木荷与马占相思的水分利用[J].应用生态学报,2014,25(4):931-939.
    [9]朱守谦.喀斯特森林生态研究(Ⅱ)[M].贵阳:贵州科技出版社,1997:1-2.
    [10]黄玉清,张中峰,何成新,等.岩溶区青冈栎整树蒸腾的季节变化[J].应用生态学报,2009,20(2):256-264.
    [11]刘延惠,舒德远,崔迎春,等.茂兰喀斯特森林亚优势种短萼海桐树干液流特征及其环境因子响应[J].水土保持学报,2016,30(5):205-211.
    [12]刘延惠,丁访军,舒德远,等.茂兰喀斯特原生林细叶青冈树干液流环境响应特征[J].南京林业大学学报(自然科学版),2017,41(3):77-85.
    [13]吴鹏,杨文斌,崔迎春,等.喀斯特区天峨槭(Acer wangchii)树干液流特征及其与环境因子的相关分析[J].生态学报,2016,30(5):205-211.
    [14]俞国松,王世杰,容丽,等.茂兰喀斯特森林主要演替群落的凋落物动态[J].植物生态学报,2011,35(10):1019-1028.
    [15]胡蕖,魏鲁明,杨成华,等.茂兰喀斯特峰丛中部常绿落叶阔叶混交林群落特征及多样性研究[J].福建林业科技,2009,36(1):43-48.
    [16]GRANIER A.A new method of sap flow measurement in tree stems[J].Annales Des Sciences Forestieres,1985,42(2):193-200.
    [17]杜家菊,陈志伟.使用SPSS线性回归实现通径分析的方法[J].生物学通报,2010,45(2):4-6.
    [18]张璇,张会兰,王玉杰,等.缙云山典型树种树干液流日际变化特征及与气象因子关系[J].北京林业大学学报,2016,38(3):11-20.
    [19]赵仲辉,康文星,田大伦,等.湖南会同杉木液流变化及其与环境因子的关系[J].林业科学,2009,45(7):127-132.
    [20]程静,欧阳旭,黄德卫,等.鼎湖山针阔叶混交林4种优势树种树干液流特征[J].生态学报,2015,35(12):4097-4014.
    [21]赵春彦,司建华,冯起,等.胡杨(Populus euphratica)树干液流特征及其与环境因子的关系[J].中国沙漠,2014,34(3):718-724.
    [22]曹云,黄志刚,欧阳志云,等.南方红壤区杜仲(Eucommia ulmoides)树干液流动态[J].生态学报,2006,26(9):2887-2895.
    [23]任启文,忻富宁,李联地,等.冀北山地华北落叶松全生长季树干液流及蒸腾耗水特征[J].中南林业科技大学学报,2018,38(5):91-97.
    [24]刘延惠.六盘山香水河小流域典型植被生长固碳及耗水特征[D].北京:中国林业科学研究院,2011:117-119.
    [25]王华,欧阳志云,任玉芬,等.北京市绿化树种紫玉兰的蒸腾特征及其影响因素[J].生态学报,2011,31(7):1867-1876.
    [26]刘春鹏,朱美秋,薛帅,等.干旱条件下荆条树干液流对不同天气的响应[J].福建林业科技,2014,41(1):34-39.
    [27]隋旭红,张建军,文万荣.晋西黄土区辽东栎、山杨树干液流比较研究[J].生态学报,2011,31(16):4791-4798.
    [28]曹文强,韩海荣,马钦彦,等.山西太岳山辽东栎夏季树干液流通量研究[J].林业科学,2004,40(2):174-177.
    [29]胡兴波,韩磊,张东,等.黄土半干旱区白榆和侧柏夜间液流动态分析[J].中国水土保持科学,2010,8(4):51-56.
    [30]池波,蔡体久,满秀玲,等.大兴安岭北部兴安落叶松树干液流规律及影响因子分析[J].北京林业大学学报,2013,35(4):21-26.
    [31]倪广艳,赵平,朱丽薇,等.荷木整树蒸腾对干湿季土壤水分的水力响应[J].生态学报,2015,35(3):652-662.
    [32]丁访军,王兵,赵广东.毛竹树干液流变化及其与气象因子的关系[J].林业科学,2011,47(7):73-81.
    [33]徐先英,孙保平,丁国栋,等.干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应[J].生态学报,2008,28(3):895-905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700