用户名: 密码: 验证码:
碱激发胶凝材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Literature review of alkali-activated cementitious materials
  • 作者:郑文忠 ; 邹梦娜 ; 王英
  • 英文作者:ZHENG Wenzhong;ZOU Mengna;WANG Ying;Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education,Harbin Institute of Technology;
  • 关键词:碱激发胶凝材料 ; 制备技术 ; 反应机理 ; 工作性能 ; 力学性能 ; 耐久性能
  • 英文关键词:alkali-activated cementitious materials;;preparation technology;;reaction mechanism;;workability;;mechanical property;;durability
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:哈尔滨工业大学结构工程灾变与控制教育部重点实验室;
  • 出版日期:2018-10-24 10:13
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51478142)
  • 语种:中文;
  • 页:JZJB201901005
  • 页数:12
  • CN:01
  • ISSN:11-1931/TU
  • 分类号:32-43
摘要
介绍了碱激发胶凝材料的制备技术和碱激发反应机理,总结了碱激发胶凝材料的工作性能、力学性能、耐久和耐高温特性。分析表明:激发剂的掺量和水玻璃模数是影响碱激发胶凝材料凝结时间和流动度的关键参数,凝结时间介于13~183 min之间,终凝时间介于15~215 min之间,流动度介于133~230 mm之间,可通过改变激发剂的掺量和水玻璃模数使凝结时间和流动性满足不同要求;碱激发胶凝材料具有早强、高强的特点,28 d抗压强度可达到60 MPa以上,3 d抗压强度可达到稳定强度的70%以上;碱激发胶凝材料高温下性能较稳定,在600~800℃的高温下抗压强度可达到常温状态下的60%以上;碱激发胶凝材料具有优异的抗冻融性能,其抗冻等级可达到F300以上;碱激发胶凝材料中由于没有极易遭受侵蚀的水化产物存在,故抗酸腐蚀能力强;碱激发胶凝材料由于孔结构致密,具有良好的抗渗性能。并针对碱激发胶凝材料优选配比和应用所需要解决的收缩、泛霜等问题,对未来研究的方向进行了展望。
        This paper introduces the preparation technology and reaction mechanism of alkali-activated cementitious materials and then summarizes workability, mechanical properties, durability and high-temperature resistance of alkali-activated cementitious materials. It is found that the content of alkali activator and the modulus of sodium silicate are the key parameters affecting the setting time and fluidity of alkali-activated cementitious materials, of which the initial setting time is 13-183 min, the final setting time is 15-215 min and the fluidity is 133-230 mm. Different requirements of setting time and fluidity can be met by changing the content of alkali activator and modulus of sodium silicate. Alkali-activated cementitious materials have the performance of high strength and early strength, whose compressive strength can reach above 60 MPa at the age of 28 days, and the compressive strength at the age of 3 days can be up to more than 70% of the strength at the steady state. Alkali-activated cementitious materials can withstand at least 600-800 ℃, at which the compressive strength can remain above 60% of the strength at the normal temperature. Alkali-activated cementitious materials have excellent freeze-thaw resistance with frost-resisting grade of F300 at the lowest. Alkali-activated cementitious materials can resistant the acid corrosion due to the absence of products that are vulnerable to be corroded. Alkali-activated cementitious materials have excellent impermeability because of their dense structure of pores. Finally, aiming at the problems to be solved for the optimization and application of alkali-activated cementitious materials, such as the shrink and frost, this paper discusses the research trend of alkali-activated cementitious materials.
引文
[1] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44:299-327.
    [2] 郑文忠, 朱晶. 碱矿渣胶凝材料结构工程应用基础[M]. 哈尔滨:哈尔滨工业大学出版社, 2015:1-53.(ZHENG Wenzhong, ZHU Jing. Application foundation of alkali-activated slag cementitious material in structural engineering[M].Harbin:Harbin Institute of Technology Press, 2015:1-53.(in Chinese))
    [3] 吴元锋, 仪桂云, 刘全润,等. 粉煤灰综合利用现状[J]. 洁净煤技术, 2013, 19(6):100-104.(WU Yuanfeng,YI Guiyun,LIU Quanrun, et al.Current situation of comprehensive utilization of fly ash[J].Clean Coal Technology, 2013, 19(6):100-104. (in Chinese))
    [4] 汪先三. 我国高岭土开发利用现状及应用前景[J]. 中国非金属矿工业导刊, 2016(2):8-9.(WANG Xiansan.Exploitation and application prospects of kaolin in China[J]. China Non-metallic Mining Industry Herald, 2016(2):8-9. (in Chinese))
    [5] 马鸿文, 杨静, 任玉峰,等. 矿物聚合材料:研究现状与发展前景[J]. 地学前缘, 2002, 9(4):397- 407.(MA Hongwen, YANG Jing, REN Yufeng, et al. Mineral polymer: current developments and prospects[J].Earth Science Frontiers, 2002, 9(4):397- 407. (in Chinese))
    [6] PACHECO-TORGAL F,CASTRO-GOMES J,JALALI S. Alkali-activated binders: a review: part 1: historical background, terminology, reaction mechanisms and hydration products[J]. Construction & Building Materials, 2008, 22(7):1305-1314.
    [7] SOFI M, DEVENTER J S J V, MENDIS P A, et al. Engineering properties of inorganic polymer concretes (IPCs)[J]. Cement & Concrete Research, 2007, 37(2):251-257.
    [8] RASHAD A M, ZEEDAN S R, HASSAN A A. Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes[J]. Construction & Building Materials, 2016, 102(2):811-820.
    [9] BAKHAREV T. Resistance of geopolymer materials to acid attack[J]. Cement & Concrete Research, 2005, 35(4):658- 670.
    [10] BAKHAREV T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cement & Concrete Research, 2005, 35(6):1233-1246.
    [11] 王旻, 覃维祖. 化学激发胶凝材料用于CFRP加固混凝土柱的研究[J]. 施工技术, 2007, 36(3):73-75.(WANG Min, QIN Weizu. Study on CFRP strengthening concrete structures with a chemical activating cementitious material[J]. Construction Technology, 2007, 36(3):73-75. (in Chinese))
    [12] 张云升, 孙伟, 李宗津. 地聚合物胶凝材料的组成设计和结构特征[J].硅酸盐学报,2008,36(增刊1):153-159.(ZHANG Yunsheng, SUN Wei, LI Zongjin. Composition design and microstructural characterization of geopolymeric binder[J]. Journal of the Chinese Ceramic Society, 2008,36(Suppl.1):153-159. (in Chinese))
    [13] 史才军,何富强, FERNáNDEZ-JIMéNEZ A, 等. 碱激发水泥的类型与特点[J].硅酸盐学报,2012,40(1):69-75.(SHI Caijun, HE Fuqiang, FERNáNDEZ-JIMéNEZ A, et al. Classification and characteristics of alkali-activated cements[J]. Journal of the Chinese Ceramic Society, 2012,40(1):69-75.(in English))
    [14] 王亚超, 张耀君, 徐德龙. 碱激发硅灰-粉煤灰基矿物聚合物的研究[J]. 硅酸盐通报, 2011, 30(1):50-54.(WANG Yachao, ZHANG Yaojun, XU Delong. Study on alkali-activated silica fume and fly ash based geopolymer[J].Bulletin of the Chinese Ceramic Society, 2011, 30(1):50-54. (in Chinese))
    [15] 叶家元. 活化铝土矿选尾矿制备碱激发胶凝材料及其性能变化机制[D]. 北京:中国建筑材料科学研究总院, 2015:6-9.(YE Jiayuan. A geopolymer synthesized from calcined ore-dressing tailing of bauxite and the mechanism of performance evolution[D].Beijing: China Building Materials Academy, 2015:6-9. (in Chinese))
    [16] 卢珺, 康春阳, 李秋,等. 偏硅酸钠激发胶凝材料性能及微观结构[J]. 硅酸盐通报, 2017,37(10):3412-3416.(LU Jun, KANG Chunyang, LI Qiu, et al.Properties and microstructure of sodium silicate activated cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2017,37(10):3412-3416. (in Chinese))
    [17] 马骁. 基于无机聚合物水泥的新型高性能轻骨料混凝土的制备与性能研究[D]. 长沙:中南大学, 2012:25-27.(MA Xiao. Research on preparation and performance of new type high performance lightweight aggregate concrete based on inorganic polymer cement[D]. Changsha: Central South University, 2012:25-27. (in Chinese))
    [18] 孙小巍, 吴陶俊. 碱激发矿渣胶凝材料的试验研究[J]. 硅酸盐通报, 2014, 33(11):1-3.(SUN Xiaowei, WU Taojun. Experimental research of alkali-activated slag cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11):1-3. (in Chinese))
    [19] 王聪. 碱激发胶凝材料的性能研究[D]. 哈尔滨:哈尔滨工业大学, 2006:20-34.(WANG Cong. Performance research on alkali-activated coagulation materials[D]. Harbin: Harbin Institute of Technology, 2006:20-34. (in Chinese))
    [20] WANG Shaodong, SCRIVENER K L. Hydration products of alkali-activated slag cement[J]. Cement and Concrete Research, 1995,25(3):561-571.
    [21] WANG S D, SCRIVENER K L, PRATT P L. Factors affecting the strength of alkali-activated slag[J]. Cement & Concrete Research, 1994, 24(6):1033-1043.
    [22] PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes:a cement for the future[J]. Cement & Concrete Research, 1999, 29(8):1323-1329.
    [23] DUXSON P, PROVIS J L, LUKEY G C, et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties[J]. Colloids & Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1/2/3):47-58.
    [24] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis Calorimetry, 1989, 35(2): 429- 441.
    [25] 王爱国, 孙道胜, 胡普华, 等. 碱激发偏高岭土制备土聚水泥的试验研究[J]. 合肥工业大学学报(自然科学版), 2008,31(4):617- 621.(WANG Aiguo, SUN Daosheng, HU Puhua, et al. Experimental research on preparing geopolymeric cement with metakaolin activated by alkali activators[J]. Journal of Hefei University of Technology (Natural Science Edition), 2008,31(4):617- 621. (in Chinese))
    [26] BONDAR D, LYNSDALE C J,MILESTONE N B,et al. Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans[J]. Cement & Concrete Composites,2011,33(2):251-260.
    [27] CHI M, HUANG R. Binding mechanism and properties of alkali-activated fly ash/slag mortars[J]. Construction & Building Materials, 2013, 40(3):291-298.
    [28] 周梅, 王传洲, 李再文,等. 基于正交及响应曲面设计的自燃煤矸石地质聚合物配体优化[J]. 硅酸盐通报, 2013, 32(7):1258-1263.(ZHOU Mei, WANG Chuanzhou, LI Zaiwen, et al. Ligand optimization of spontaneous combustion coal gangue geopolymer based on the orthogonal and response surface design[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7):1258-1263.(in Chinese))
    [29] AYDIN S, BARADAN B. Effect of activator type and content on properties of alkali-activated slag mortars[J]. Composites: Part B: Engineering, 2014, 57(3):166-172.
    [30] DODIOMOV Ilia. 碱矿渣胶凝材料的工作性研究[D]. 哈尔滨:哈尔滨工业大学, 2015:25-57.(DODIOMOV Ilia. The workability of alkali-activated slag cementitious material[D]. Harbin: Harbin Institute of Technology, 2015:25-57. (in Chinese))
    [31] DAVIDOVITS J. Geopolymers: inorganic polymeric new materials[J]. Journal of Thermal Analysis and Calorinetry, 1991,37(8):1633-1656.
    [32] HAJIMOHAMMADI A, PROVIS J L, VAN DEVENTER J S J. Effect of alumina release rate on the mechanism of geopolymer gel formation[J]. Chemistry of Materials, 2010, 22(18): 5199-5208.
    [33] 牛福生,聂轶苗,张锦瑞.地质聚合物中常用的矿渣激发剂及激发机理[J]. 混凝土,2009 (11):83-85.(NIU Fusheng, NIE Yimiao, ZHANG Jinrui. Review on the general slag activation and activated mechanism for mineral polymer[J]. Concrete, 2009 (11):83-85.(in Chinese))
    [34] 常利. Na-粉煤灰基地聚合物胶凝材料的制备及性能研究[D]. 西安:长安大学, 2015:21-38.(CHANG Li. Preparation and performance of Na-geopolymer cementitious material based on fly ash[D]. Xi’an: Chang’an University, 2015:21-38. (in Chinese))
    [35] BARBOSA V F F, MACKENZIE K J D, THAUMATURGO C. Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers[J]. International Journal of Inorganic Materials, 2000, 2(4):309-317.
    [36] 李硕, 彭小芹, 贺芳. 地聚合物胶凝材料的性能研究[J]. 硅酸盐通报, 2010, 28 (2):39- 44.(LI Shuo, PENG Xiaoqin, HE Fang. Study on the properties of geopolymeric cementitious materials[J].Bulletin of the Chinese Ceramic Society, 2010, 28 (2):39- 44. (in Chinese))
    [37] 王亚超, 张耀君, 徐德龙. 碱激发硅灰-粉煤灰基矿物聚合物的研究[J]. 硅酸盐通报, 2011, 30(1):50-54.(WANG Yachao, ZHANG Yaojun, XU Delong. Study on alkali-activated silica fume and fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(1):50-54. (in Chinese))
    [38] SHIMODA K, TOBU Y, KANEHASHI K, et al. Total understanding of the local structures of an amorphous slag: perspective from multi-nuclear (29 Si, 27 Al, 17 O, 25 Mg, and 43 Ca) solid-state NMR[J]. Journal of Non-Crystalline Solids, 2008, 354(10):1036-1043.
    [39] PURDON A O. The action of alkali on blast furnace slag[J]. Journal of the Society of Chemical Industry,1940,59:191-202.
    [40] GLUKHOVSKY V D. Soil silicates, their properties, technology and manufacturing and fields of application[D]. Kiev: Civil Engineering Institute, 1965.
    [41] DAVIDOVITS J. Geopolymer chemistry and properties[C]// Proceedings of the First European Conference on Soft Mineralogy. Compicgne, France: the Geopdymer Institute, 1988: 132-136.
    [42] VAN DEVENTER J S J,PROVIS J L,DUXSON P,et al. Reaction mechanisms in the geopolymeric conversation of inorganic waste to useful products[J]. Journal of Hazardous Materials, 2007,39(3):506-513.
    [43] FERNáNDEZ-JIMéNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement & Concrete Research, 2005, 35(6):1204-1209.
    [44] 张云升, 孙伟, 郑克仁,等. ESEM追踪K-PSDS型地聚合物水泥的水化[J]. 建筑材料学报, 2004, 7(1):8-13.(ZHANG Yunsheng, SUN Wei, ZHENG Keren, et al. In situ quantitatively tracking the hydration process of K-PSDS geopolymer with ESEM[J]. Journal of Building Materials, 2004, 7(1):8-13. (in Chinese))
    [45] 段瑜芳, 王培铭, 杨克锐. 碱激发偏高岭土胶凝材料水化硬化机理的研究[J]. 新型建筑材料, 2006(1):22-25.(DUAN Yufang, WANG Peiming, YANG Kerui. Discussion on the hydration mechanism of alkali-activated meta-kaolin cementitious materials[J]. New Building Materials, 2006(1):22-25. (in Chinese))
    [46] 聂轶苗, 马鸿文, 杨静, 等. 矿物聚合材料固化过程中的聚合反应机理研究[J]. 现代地质, 2006(2):340-346.(NIE Yimiao,MA Hongwen,YANG Jing,et al. Mechanism of polymerization during the solidification of fly ash-based geopolymers[J]. Geoscience, 2006(2):340-346. (in Chinese))
    [47] 孙家瑛, 诸培南, 吴初航. 矿渣在碱性溶液激发下的水化机理探讨[J]. 硅酸盐通报, 1988,17(6):20-29.(SUN Jiaying, ZHU Peinan, WU Chuhang. Discussion on the hydration mechanism of slag activated byalkaline solution[J]. Bulletin of the Chinese Ceramic Society, 1988,17(6):20-29. (in Chinese))
    [48] 刘江, 史迪, 张文生,等. 硅钙渣制备碱激发胶凝材料的机理研究[J]. 硅酸盐通报, 2014, 33(1):6-10.(LIU Jiang, SHI Di, ZHANG Wensheng, et al. Study on the mechanism of alkali-activated cementitious materials prepared with calcium silicate slag[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1):6-10. (in Chinese))
    [49] 韩丹, 车云轩, 宋鹏,等. 偏高岭土基地质聚合物的制备和力学性能研究[J]. 四川水泥, 2014(5):120-123.(HAN Dan, CHE Yunxuan, SONG Peng, et al.Study on the preparation and mechanical properties of kaolin Based Geopolymer[J]. Sichuan Cement, 2014(5):120-123. (in Chinese))
    [50] 郑文忠, 陈伟宏, 王英. 碱矿渣胶凝材料的耐高温性能[J]. 华中科技大学学报(自然科学版), 2009,37(10):96-99.(ZHENG Wenzhong, CHEN Weihong, WANG Ying. High-temperature resistance performance of alkali-activated slag cementitious materials[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009,37(10):96-99. (in Chinese))
    [51] 彭晖, 李树霖, 蔡春声,等. 偏高岭土基地质聚合物的配合比及养护条件对其力学性能及凝结时间的影响研究[J]. 硅酸盐通报, 2014, 33(11):2809-2817.(PENG Hui, LI Shulin, CAI Chunsheng, et al. Study on effect of mix and curing conditions on the mechanical properties and setting time of metakaolin-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11):2809-2817. (in Chinese))
    [52] 沈宝镜. 碱激发矿渣水泥抗海水侵蚀性能的研究[D]. 西安:西安建筑科技大学, 2011:19-26.(SHENG Baojing. Study on the performance of alkali-activated slag cement under seawater corrosion[D]. Xi’an: Xi’an University of Architecture and Technology, 2011:19-26. (in Chinese))
    [53] 张海燕, 祁术亮, 曹亮. 地聚物净浆、砂浆和混凝土高温后力学性能比较[J]. 防灾减灾工程学报, 2015, 35(1):11-16.(ZHANG Haiyan, QI Shuliang, CAO Liang.Mechanical performance comparison of geopolymer paste, mortar and concrete after exposure to high temperature[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(1):11-16. (in Chinese))
    [54] 祝贺. 碱矿渣基地质聚合物的制备及其高温性能研究[D]. 南宁:广西大学, 2016:37- 46.(ZHU He. The preparation and high temperature performance research of alkali slag base geopolymer materials[D]. Nanning: Guangxi University,2016:37- 46.(in Chinese))
    [55] FU Y, CAI L, WU Y. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete[J]. Construction & Building Materials, 2011, 25(7):3144-3148.
    [56] 贾屹海. Na-粉煤灰地质聚合物制备与性能研究[D]. 北京:中国矿业大学(北京), 2009:67-74.(JIA Yihai. Synthesis and characterization of fly-ash-based Na-geopolymer[D]. Beijing:China University of Mining and Technology (Beijing), 2009:67-74. (in Chinese))
    [57] 付亚伟, 蔡良才, 曹定国,等. 碱矿渣高性能混凝土冻融耐久性与损伤模型研究[J]. 工程力学, 2012,29(3):103-109.(FU Yawei, CAI Liangcai, CAO Dingguo, et al.Freeze-thaw durability and damage mechanics model of high performance alkali-slag concrete[J]. Engineering Mechanics, 2012,29(3):103-109. (in Chinese))
    [58] PALOMO A,MACLAS A,BLANCO M T, et al. Physical chemical and mechanical characterization of geopolymers[C]// Proceedings of 9th International Congress on the Chemistry of Cement.[S.l.]:[s.n.],1992:501-511.
    [59] 郑娟荣, 杨长利, 陈有志,等. 碱激发胶凝材料抗硫酸盐侵蚀机理的探讨[J]. 郑州大学学报(工学版), 2012, 33(3):4-7.(ZHENG Juanrong, YANG Changli, CHEN Youzhi, et al.Discussion on the mechanism of the resistance of alkali-activated cementing material to external sulfate attack[J]. Journal of Zhengzhou University (Engineering Science), 2012, 33(3):4-7. (in Chinese))
    [60] SHI C. Strength, pore structure and permeability of alkali-activated slag mortars[J]. Cement & Concrete Research, 1996, 26(12):1789-1799.
    [61] 曹定国, 蔡良才, 吴永根,等. 碱-矿渣制备高性能无机聚合物混凝土试验研究[J]. 混凝土, 2011(5):84-87.(CAO Dingguo, CAI Liangcai, WU Yonggen, et al. Experimental studies on high performance inorganic polymer concrete made from alkali-slag[J]. Concrete, 2011(5):84-87. (in Chinese))
    [62] 史才军, 克利文科, 罗伊. 碱激发水泥和混凝土[M]. 北京:化学工业出版社, 2008:145-153.(SHI Caijun, KRIVENKO P V, ROY D. Alkali-activated cements and concretes[M]. Beijing: Chemical Industry Press, 2008:145-153. (in Chinese))
    [63] 顾亚敏, 方永浩. 碱矿渣水泥的收缩与开裂特性及其减缩与增韧[J]. 硅酸盐学报, 2012, 40(1):76-84.(GU Yamin,FANG Yonghao. Shrinkage, cracking, shrinkage-reducing and toughening of alkali-activated slag cement-a short review[J]. Journal of the Chinese Ceramic Society, 2012, 40(1):76-84. (in Chinese))
    [64] NETO A A M, CINCOTTO M A, REPETTE W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cement & Concrete Research, 2008, 38(4):565-574.
    [65] 朱晓丽. 延缓碱-矿渣水泥凝结的研究[D]. 唐山:河北理工学院,2002:23-27.(ZHU Xiaoli. Study on retarding the setting of alkali-slag cement[D]. Tangshan: Hebei Polytechnic University, 2002: 23-27. (in Chinese))
    [66] 闫少杰, 宋少民. 粉煤灰对碱-矿渣水泥及构件性能影响研究[J]. 江西建材, 2015(12):149-154.(YAN Shaojie, SONG Shaomin. Study on influence of fly ash on properties of alkali-slag cement and components[J]. Jiangxi Building Materials, 2015(12):149-154. (in Chinese))
    [67] 郑文忠, 陈伟宏, 张建华. 碱矿渣胶凝材料作胶粘剂的植筋性能研究[J]. 武汉理工大学学报, 2009,31(14):10-14.(ZHENG Wenzhong, CHEN Weihong, ZHANG Jianhua.Experimental research on performance of bonded rebars with alkali-activated cementitious materia[J]. Journal of Wuhan University of Technology, 2009,31(14):10-14. (in Chinese))
    [68] 郑文忠, 陈伟宏, 徐威,等. 用碱激发矿渣耐高温无机胶在混凝土表面粘贴碳纤维布试验研究[J]. 建筑结构学报, 2009, 30(4):138-144.(ZHENG Wenzhong, CHEN Weihong, XU Wei, et al.Experimental research on alkali-activated slag high temperature resistant inorganic adhesive pasting CFRP sheets on surface of concrete[J]. Journal of Building Structures, 2009, 30(4):138-144. (in Chinese))
    [69] 郑文忠, 朱晶, 陈伟宏. 用碱矿渣胶凝材料粘贴碳纤维布加固组合梁受力性能试验研究[J]. 铁道学报, 2011,33(1):101-107.(ZHENG Wenzhong,ZHU Jing,CHEN Weihong. Experimental research on mechanical properties of the composite beams strengthened with carbon fiber sheets using alkali-activated slag cementitious materials[J]. Journal of the China Railway Society, 2011,33(1):101-107. (in Chinese))
    [70] 郑文忠, 陈伟宏, 王明敏. 用无机胶粘贴CFRP布加固混凝土梁受弯试验研究[J]. 土木工程学报,2010,43(4):37- 45.(ZHENG Wenzhong, CHEN Weihong, WANG Mingmin. Experimental study on flexural behavior of concrete beams strengthened with CFRP sheets bonded with an inorganic matrix[J]. China Civil Engineering Journal,2010,43(4):37- 45. (in Chinese))
    [71] 郑文忠, 万夫雄, 李时光. 用无机胶粘贴CFRP布加固混凝土板抗火性能试验研究[J]. 建筑结构学报, 2010,31(10):89-97.(ZHENG Wenzhong, WAN Fuxiong, LI Shiguang. Experimental research of fire performance on reinforced concrete slabs strengthened with CFRP sheets bonded with inorganic adhesive[J]. Journal of Building Structures, 2010,31(10):89-97. (in Chinese))
    [72] 郑文忠, 万夫雄, 李时光. 用无机胶粘贴CFRP布加固混凝土板火灾后受力性能[J]. 吉林大学学报(工学版), 2010, 40(5):1244-1249.(ZHENG Wenzhong, WAN Fuxiong, LI Shiguang. Mechanical performance of reinforced concrete slabs strengthened with CFRP sheets bonded with an inorganic adhesive after fire[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(5):1244-1249. (in Chinese))
    [73] 郑文忠, 万夫雄, 李时光. 无机胶粘贴CFRP布加固梁火灾后受力性能试验[J]. 哈尔滨工业大学学报, 2010, 42(8):1194-1198.(ZHENG Wenzhong, WAN Fuxiong, LI Shiguang. Experimental research on mechanical performance of reinforced concrete beams strengthened with CFRP sheets bonded with an inorganic adhesive after fire[J]. Journal of Harbin Institute of Technology, 2010, 42(8):1194-1198. (in Chinese))
    [74] 王维才, 饶福才, 唐和俊,等. 碱矿渣混凝土干燥收缩性能与预测模型研究[J]. 建筑技术, 2013, 44(2):161-164.(WANG Weicai, RAO Fucai, TANG Hejun, et al. Drying shrinkage and prediction model of alkali-slag concrete[J]. Architecture Technology, 2013, 44(2):161-164. (in Chinese))
    [75] 杨长辉, 王磊, 田义,等. 碱矿渣泡沫混凝土性能研究[J]. 硅酸盐通报, 2016, 35(2):555-560.(YANG Changhui, WANG Lei, TIAN Yi, et al.Fundamental characteristics of alkali activated slag cement foam concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(2):555-560. (in Chinese))
    [76] 郑文忠, 黄文宣, 焦贞贞,等. 碱矿渣陶粒混凝土基本性能试验研究[J]. 北京工业大学学报, 2017, 43(8):1182-1189.(ZHENG Wenzhong, HUANG Wenxuan, JIAO Zhenzhen, et al.Experiment research on basic performance of alkali-activated slag ceramsite concrete[J]. Journal of Beijing University of Technology, 2017, 43(8):1182-1189. (in Chinese))
    [77] 王晓博. 复合掺料无水泥混凝土短柱轴压性能试验研究[D]. 延吉:延边大学, 2015:36- 43.(WANG Xiaobo. Experimental study on short column axial pressure of composite admixture of nocement concrete[D]. Yanji:Yanbian University, 2015:36- 43.(in Chinese))
    [78] 王聪,裴长春.不同掺入率玄武岩纤维对无熟料水泥再生混凝土梁的抗裂性能影响[J].江西建材,2018(5):16-17.(WANG Cong, PEI Changchun. Influence of basalt fibers with different incorporation rate on crack resistance of recycled concrete beams without clinker[J]. Jiangxi Building Materials, 2018(5):16-17. (in Chinese))
    [79] 郑文忠, 焦贞贞, 黄文轩, 等. 国家自然科学基金资助项目(51478142))进展报告[R].哈尔滨:哈尔滨工业大学, 2017:1-2.
    [80] 金漫彤. 地聚合物固化生活垃圾焚烧飞灰中重金属的研究[D]. 南京:南京理工大学, 2011:35- 43.(JIN Mantong. Immobilizaion of heavy metals in municipal solid waste incineration(MSWI) fly ash with geopolymer[D]. Nanjing:Nanjing University of Science and Technology, 2011:35- 43. (in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700