用户名: 密码: 验证码:
小型核反应堆自主控制及其深空探测应用设想
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Autonomous Control of Small Nuclear Reactor and Its Applications for Deep Space Exploration
  • 作者:邱建文 ; 徐瑞 ; 赵宇庭
  • 英文作者:QIU Jian-wen;XU Rui;ZHAO Yu-ting;China Nuclear Power Technology Research Institute Beijing Division;School of Aerospace Engineering,Beijing Institute of Technology;Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration,Ministry of Industry and Information Technology;
  • 关键词:小型模块化反应堆 ; 自主控制 ; 深空探测 ; 多智能体
  • 英文关键词:Small modular reactor(SMR);;Autonomous control;;Deep space exploration;;Multi-agent
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:中广核研究院北京分院;北京理工大学宇航学院;深空自主导航与控制工信部重点实验室;
  • 出版日期:2019-01-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(61773061);; 基础科研计划资助(JCKY2016602C018);; 民用航天预研项目支持(MYHT201705);; 高等学校学科创新引智计划资助(B16003)
  • 语种:中文;
  • 页:YHXB201901001
  • 页数:8
  • CN:01
  • ISSN:11-2053/V
  • 分类号:5-12
摘要
针对空间小型模块化核反应堆的自主控制问题,提出自主控制体系结构,降低反应堆控制对人的依赖程度,满足了深空探测任务对空间堆自主控制的需求。首先介绍了核反应堆自主控制技术和空间探测自主技术的发展现状,分析了空间小型堆的自主控制需求,然后阐释了自主控制及核反应堆近自主控制的内涵。最后基于空间堆的运行特点,给出小型堆近自主控制分层体系结构的组成元素,并进一步建立了融合决策层和功能层的小型堆多智能体自主控制体系结构。
        The autonomous control system architectures are put forward for the autonomous control of a small space nuclear reactor,which can reduce the dependence of the reactor control on staff and satisfy the need of a deep space exploration mission for the autonomous control of the space reactor. The development status of the autonomous control technology of the nuclear reactor and the autonomous technology of the deep space exploration are introduced and the need of the autonomous control of the small space reactor is analyzed. The connotation of the autonomous control and the near autonomous control of the space reactor are explained. According to the operating characteristics of the space reactor,the elements of the near autonomous control layered scheme are put forward,and a multi-agent control scheme of the nuclear reactor is constructed,which integrates decision-making and function layers to realize the multi-agent control.
引文
[1]廖宏图.空间核动力技术概览与发展脉络初探[J].火箭推进,2016,42(5):58-65.[Liao Hong-tu. Survey and venation analysis on space nuclear power[J]. Journal of Rocket Propulsion,2016,42(5):58-65.]
    [2]吉宇,孙俊,石磊.核热推进系统热工过程及堆芯关键技术分析[J].原子能科学技术,2017,51(12):2171-2176.[Ji Yu,Sun Jun,Shi Lei. Thermal hydraulics process and key technology challenge in reactor core of nuclear thermal propulsion system[J]. Atomic Energy Science and Technology,2017,51(12):2171-2176.]
    [3]游尔胜,石磊,郑艳华,等.球床堆在空间核动力系统中的应用[J].原子能科学技术,2015,49(s1):75-80.[You Ersheng,Shi Lei,Zheng Yan-hua,et al. Application of pellet bed reactor in space nuclear power system[J]. Atomic Energy Science&Technology,2015,49(s1):75-80.]
    [4]马世俊,杜辉,周继时,等.核动力航天器发展历程(下)[J].中国航天,2014(5):32-35.[Ma Shi-jun,Du Hui,Zhou Jishi,et al. Development of nuclear powered spacecraft[J].Aerospace China,2014(5):32-35.]
    [5] Hussain M,Reitsma F,Subki M H,et al. Advances in SMR technology development, a supplement to:IAEA advanced reactors information system(ARIS)[EB/OL]. 2018[2019].https://aris. iaea. org/Publications/SMR-Book_2018. pdf.
    [6]刘国发,郭文琪.核电厂仪表与控制[M].北京:原子能出版社,2010.
    [7] Volpe R,Nesnas I,Estlin T,et al. The CLARAty architecture for robotic autonomy[C]. IEEE Aerospace Conference,Montana,USA,March 10-17,2001.
    [8] Nelson R M,Stevens C M,StockyJ F. The deep space 1mission:flight validation of new technology[J]. Space Science Reviews,2007,129(4):305-308.
    [9] Johnston M D. Spike:Ai scheduling for NASA’s Hubble space telescope[C]. The 6th Conference on Artificial Intelligence Applications,Santa Barbara,USA,May 5-9,1990.
    [10] Chien S, Rabideau G, Knight R, et al. Aspen-automated planning and scheduling for space mission operations[R].Pasadena,USA:Jet Propulsion Laboratory,June 2000.
    [11]赵凡宇,徐瑞,崔平远.启发式深空探测器任务规划方法[J].宇航学报,2015(5):496-503.[Zhao Fan-yu,Xu Rui,Cui Ping-yuan. Heuristic mission planning approach for deep space explorer[J]. Journal of Astronautics,2015(5):496-503.]
    [12]崔平远,徐瑞,朱圣英,等.深空探测器自主技术发展现状与趋势[J].航空学报,2014,35(1):13-28.[Cui Ping-yuan,Xu Rui, Zhu Sheng-ying, et al. The research status and developing ends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):13-28.]
    [13]武长青,徐瑞,朱圣英,等.非凸二次约束下航天器姿态机动路径迭代规划方法[J].宇航学报,2016(6):671-678.[Wu Chang-qing,Xu Rui,Zhu Sheng-ying,et al. Spacecraft attitude maneuver path iterative planning method under nonconvex quadratic constraints[J]. Journal of Astronautics,2016(6):671-678.]
    [14]薛喜平,张洪波,孔德庆.深空探测天文自主导航技术综述[J].天文研究与技术,2017(3):382-391.[Xue Xi-ping,Zhang Hong-bo, Kong De-qing. An overview of celestial autonomous navigation technology for deep space exploration[J].Astronomical Research and Technology,2017(3):382-391.]
    [15]姜连祥,李华旺,杨根庆,等.航天器自主故障诊断技术研究进展[J].宇航学报,2009(4):1320-1326.[Jiang Lianxiang, Li Hua-wang, Yang Gen-qing, et al. A survey of spacecraft autonomous fault diagnosis research[J]. Journal of Astronautics,2009(4):1320-1326.]
    [16]代树武,孙辉先.航天器自主运行技术的进展[J].宇航学报,2003,24(1):17-22.[Dai Shu-wu, Sun Hui-xian.Technical overview of autonomous control and on-board dataprocessing for spacecrafts[J]. Journal of Astronautics,2003,24(1):17-22.]
    [17] Scott F D. SP-100 space reactor design[J]. Progress in Nuclear Energy,2003,42(3):323-359.
    [18] Gat E,Bonnasso R P, Murphy R, et al. On three-layer architectures[J]. Artificial Intelligence&Mobile Robots,1998:195-210.
    [19] Brooks R. A robust layered control system for a mobile robot[J].IEEE J. Robot. Autom.,1985,2(1):14-23.
    [20] Cetiner S M,Fugate D L,Kisner R A,et al. Development of a supervisory control system concept for advanced small modular reactors[C]. ASME 2014 Small Modular Reactors Symposium,2014:V001T02A009.
    [21] Normile D. Octopus genome surprises and teases[EB/OL].2015[2019]. http://www. sciencemag. org/news/2015/08/octopus-genome-surprises-and-teases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700