用户名: 密码: 验证码:
基于能量理论的体积压裂工程改造效果评价模型及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of engineering effectiveness of volume fracturing based on energy conservation principles and its application
  • 作者:冯福平 ; 黄芮 ; 雷扬 ; GUO ; Boyun ; 胡超洋 ; 王胡振
  • 英文作者:FENG Fuping;HUANG Rui;LEI Yang;GUO Boyun;HU Chaoyang;WANG Huzhen;Key Laboratory of Education Ministry for Enhanced Oil Recovery,Northeast Petroleum University;Key Laboratory of Reservoir Stimulation,CNPC;University of Louisiana at Lafayette;
  • 关键词:体积压裂 ; 工程改造效果 ; 裂缝密度 ; 裂缝长度 ; 储层改造体积
  • 英文关键词:volume fracturing;;engineering effectiveness of fracturing;;fracture density;;fracture length;;stimulated reservoir volume
  • 中文刊名:SYDX
  • 英文刊名:Journal of China University of Petroleum(Edition of Natural Science)
  • 机构:东北石油大学提高油气采收率教育部重点实验室;中国石油天然气集团有限公司油气藏改造试井与评价重点研究室;University of Louisiana at Lafayette;
  • 出版日期:2019-02-18
  • 出版单位:中国石油大学学报(自然科学版)
  • 年:2019
  • 期:v.43;No.231
  • 基金:黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2016127);; 中国博士后科学基金项目(2018M641802)
  • 语种:中文;
  • 页:SYDX201901010
  • 页数:9
  • CN:01
  • ISSN:37-1441/TE
  • 分类号:86-94
摘要
体积压裂工程改造效果主要受储层改造体积(SRV)及其内部裂缝密度和导流能力的影响,由于微地震得出的SRV不能反映改造体积内裂缝的密度和导流能力,因此仅依靠SRV不能真实准确地反映体积压裂的工程效果。根据能量守恒和物质平衡原理,通过变分法建立改造体积内平均裂缝长度和等效裂缝条数计算模型,得到用于描述改造体积内裂缝密度和导流能力的关键参数,在此基础上综合考虑影响体积压裂工程改造效果的改造体积、裂缝密度和导流能力,提出体积压裂工程改造效果评价参数计算模型。应用效果表明,该评价参数在有微地震监测井和无微地震监测井中与产能之间均具有较好的相关性,实现了对体积压裂工程改造效果的准确评价,为油气井体积压裂产能影响因素分析提供了有效的区分手段。
        The engineering effectiveness of volume fracturing can be influenced by several factors including the stimulated reservoir volume( SRV) and the density and conductivity of the fractures. The SRV derived from the microseismic data cannot be used as the only parameter to characterize the engineering effectiveness of a hydraulic fracturing process. In this study,based on the principles of energy conservation and material balance,a model was established to calculate the average fracture length and number in the SRV by means of a variation method,which can provide key parameters to describe the fracture density and conductivity in the SRV. For a case study of tight reservoirs,an evaluation model was established in terms of an evaluation parameter,in which the SRV,the fracture density and fracture conductivity were considered to evaluate the engineering effectiveness of the volume fracturing. The field application analysis shows that the evaluation parameter has a positive relationship with the real field productivity whether there are seismic monitoring data or not,and the method can realize the accurate evaluation of the engineering effectiveness of volume fracturing,and provide an effective means for distinguishing the influence factors of well production.
引文
[1] WATERS G,DEAN B,DOWNIE R,et al. Simultaneous hydraulic fracturing of adjacent wells in the woodford shale[R]. SPE 119635,2009.
    [2] CHENG Yuqing,GUO Boyun,WEI Na. prediction of fracture population and stimulated reservoir volume in shale gas/oil reservoirs[R]. SPE 176833,2015.
    [3] WU Kan,JON E O. Investigation of critical in situ and injection factors in multi-fractreatments:guidelines for controlling fracture complexity[R]. SPE 163821,2013.
    [4]吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术:内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.WU Qi,XU Yun,WANG Xiaoquan,et al. Volume fracturing technology of unconventional reservoirs:connotation,optimization design and implementation[J]. Petroleum Exploration and Development,2012,39(3):352-358.
    [5]吴奇,胥云,张守良,等.非常规油气藏体积改造技术核心理论与优化设计关键[J].石油学报,2014,35(4):706-714.WU Qi,XU Yun,ZHANG Shouliang,et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica,2014,35(4):706-714.
    [6] CIPOLLA C L,WARPINSKI N R,MAYERHOFER M J,et al. The relationship between fracture complexity,reservoir properties,and fracture treatment design[J].SPE Production and Operations,2010,25(4):438-452.
    [7] YU Guang,AGUILERA R. 3D analytical modeling of hydraulic fracturing stimulated reservoir volume[R]. SPE153486,2012.
    [8] PREIKSAITIS M,BOWMAN S,URBANCIS T,et al.Enhanced fluid flow:an improved method for estimating stimulated reservoir volume[R]. SPE 171616,2014.
    [9] FISHER M K,WRIGHT C A,DAVIDSON B M,et al.Integrating fracture mapping technologies to optimize stimulations in the Barnett shale[R]. SPE 77441,2002.
    [10] MAXWELL S C,URBANCIK T I,STEINSBERGER N P,et al. Microseismic imaging of hydraulic fracture complexity in the Barnett shale[R]. SPE 77440,2002.
    [11] FISHER M K,HEINZE J R,HARRIS C D,et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[R]. SPE90051,2004.
    [12] YANG Sheng,CHEN Zhangxin,WU Wei,et al. Addressing microseismic unceratinty from geological aspects to improve accuracy of estimating stimulated reservoir volumes[R]. SPE 174286,2015.
    [13] QUENES A,AISSA B,BOUKHELF D,et al. Estimation of stimulated reservoir volume using the concept of shale capacity and its validation with microseismic and well performance:application to the marcellus and haynesville[R]. SPE 169565,2014.
    [14] ZHAO Guang. A simplified engineering model integrated stimulated reservoir volume(SRV)and tight formation characterization with multistage fractured horizontal wells[R]. SPE 162806,2012.
    [15] YU Guang. 3D analytical modeling of hydraulic fracturing stimulated reservoir volume[R]. SPE 153486,2012.
    [16]翁定为,付海峰,卢拥军,等.储层改造体积预测模型的研究[J].石油钻探技术,2016,44(1):95-100.WENG Dingwei,FU Haifeng,LU Yongjun,et al. A model for predicting the volume of stimulated reservoirs[J]. Petroleum Drilling Techniques,2016,44(1):95-100.
    [17] NASSIR M,SETTARI M,WAN R. Prediction of stimulated reservoir volume and optimization of fracturing in tight gas and shale with a fully elasto-plastic coupled geomechanical model[J]. SPE Journal,2014,19(4):771-784.
    [18] MAYERHOFER M J,LOLON E P,WARPINSKI N R,et al. What is stimulated reservoir volume[J]. SPE Production and Operations,2010,25(1):89-98.
    [19] FRIEDRICH M,MILLIKEN M. Determining the contributing reservoir volume from hydraulically fracture horizontal wells in the Wolfcamp formation in the midland basin[R]. SPE 168839,2013.
    [20] VERA F,SHADRAVAN A,HUGHES B. Stimulated reservoir volume 101:SRV in a nutshell[R]. IPTC18413,2015.
    [21] OUENES A,BACHIR A,BOUKHELF D,et al. Estimation of stimulated reservoir volume using the concept of capacity and its validation with microseismic and well performance[R]. SPE 167778,2014.
    [22] SULIMAN B,MEEK R,HULL R,et al. Variable stimulated reservoir volume(SRV)simulation:Eagle Ford shale case study[R]. SPE 164546,2013.
    [23] WARPINSKI N R,MAYERHOFER M J,AGARWAL K,et al. Hydraulic fracture geomechanics and microseismic source mechanisms[R]. SPE 158935,2012.
    [24] CIPOLLA C,WALLACE J,CORPORATION H. Stimulated reservoir volume:a misapplied concept?[R]. SPE168596,2014.
    [25] CIPOLLA C L. Modeling production and evaluating fracture performance in unconventional gas reservoirs[J].JPT,2009,61(9):84-89.
    [26] CIPOLLA C L,CERAMICS C,LOLON E P,et al.Reservoir modeling and production evaluation in shalegas reservoirs[R]. IPTC 13185,2009.
    [27] MAYERHOFER M J,LOLON E P,YOUNGBLOOD J E,et al. Integration of microseismic fracture mapping results with numerical fracture network production modeling in the Barnett shale[R]. SPE 102103,2006.
    [28] COULTER G R,GROSS B C,BENTON E G,et al.Barnett shale hybrid fracs-one operators design,application and results[R]. SPE 102063,2006.
    [29] FREDD C N,MCCONNELL S B,BONEY C L,et al.Experimental study of fracture conductivity for water fracturing and conventional fracturing applications[J].SPE Journal,2001,6(3):288-298.
    [30] XU Wenyue,LE C J,THIERCELIN M. Characterization of hydraulically-induced fracture network using treatment and micro-seismic data in tight-gas formation:a geomechanics approach[R]. SPE 125237,2009.
    [31] MEYER B R,BAZAN L W. A discrete fracture network model for hydraulically induced fractures:theory,parametric and case studies[R]. SPE 140514,2011.
    [32] WENG Xiaowei. Modeling of complex hydraulic fractures in naturally fractured formation[J]. Journal of Unconventional Oil and Gas Resources,2015,9:114-135.
    [33] OLSON J E,TALEHANI A D. A Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[R]. SPE 119739,2009.
    [34] WENG Xiaowei,KRESSE O,COHEN C,et al. Modeling of hydraulic fracture network propagation in a naturally fractured formation[R]. SPE 140253,2011.
    [35] TALEGHANI A D,OLSON J E. Numerical modeling of multi-stranded-hydraulic-fracture propagation:accounting for the interaction between induced and natural fractures[J]. SPEJ,2011,16(3):575-581.
    [36] KESHAVARZI R,MOHAMMADI S,BAVESTEH H.Hydraulic fracture propagation in unconventional reservoirs:the role of natural fractures:ARMA the 46th US Rock Mechanics/Geomechanics Symposium,2012[R].American Rock Mechanics Association,2012.
    [37] WU Kan,OLSON J E. Simultaneous multifracture treatments:fully coupled fluid flow and fracture mechanics for horizontal wells[J]. SPEJ,2015,20(2):337-346.
    [38] WU Kan,OLSON J E. A simplified three-dimensional displacement discontinuity method for multiple fracture simulations[J]. International Journal of Fracture,2015,193(2):191-204.
    [39] WU Kan,OLSON J E. Numerical investigation of complex hydraulic-fracture development in naturally fractured reservoirs[J]. SPE Production and Operations,2016,31(4):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700