用户名: 密码: 验证码:
含初始缺陷管中管侧向屈曲过程中的动态效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of Dynamic Effect on Lateral Buckling of Pipe-in-Pipe System with Initial Imperfections
  • 作者:张泽超 ; 陈志华 ; 刘红波 ; 王哲 ; 刘凯月
  • 英文作者:Zhang Zechao;Chen Zhihua;Liu Hongbo;Wang Zhe;Liu Kaiyue;School of Civil Engineering,Tianjin University;State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;
  • 关键词:海底管道 ; 初始缺陷 ; 整体侧向屈曲 ; 管中管 ; 动态效应
  • 英文关键词:subsea pipeline;;initial imperfection;;lateral global buckling;;pipe-in-pipe(PIP)system;;dynamic effect
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学建筑工程学院;天津大学水利工程仿真与安全国家重点实验室;
  • 出版日期:2019-01-30
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.338
  • 基金:国家重点基础研究发展计划资助项目(2014CB046801)~~
  • 语种:中文;
  • 页:TJDX201904010
  • 页数:9
  • CN:04
  • ISSN:12-1127/N
  • 分类号:72-80
摘要
随着海洋油气开采深度的逐渐增加,深海石油管道在高温高压运输过程中会存在整体热屈曲现象,而热屈曲的过程中可能会存在动力效应.管中管广泛应用于深海油气输送结构,但是相关整体屈曲试验及动力效应研究很少.本文以初始缺陷波长及幅值作为变参数,对含有初始缺陷的双层管道的试验方法进行了详细介绍,并通过3组试验,对整体热屈曲试验过程中产生的动力效应现象及原因进行了分析,发现初始缺陷波长对整体屈曲过程中的动态效应起到关键作用.基于此,采用ABAQUS隐士动力分析方法建立了双层管道整体屈曲有限元分析模型,并与试验结果进行了对比,验证了模型的准确性.进而分析了管道直径大小、初始缺陷长度以及管土作用对管道屈曲过程中动态效应的产生及影响变化规律,发现了各个因素与管道中点屈曲临界力、侧向弹出速度、侧向位移以及整体动能之间的关系,通过对比分析,找到了径厚比最佳临界点以及缺陷波长与管道长度比值的临界控制点,发现管土作用对整体屈曲动态效应有显著影响,并对产生机理进行了分析,研究成果对深海油气输送双层管道结构的设计及铺设有一定的指导意义.
        With the gradual increase of offshore oil and gas exploitation depth,there will be global thermal buckling in deep sea oil pipelines during high temperature and high pressure transportation,and there may be dynamic effects in the process of thermal buckling of the pipe-in-pipe(PIP)system. PIP systems are widely used in deep-sea oil and gas transmission structures,but the related experiments and dynamic effects on global buckling are seldom studied.Taking the initial imperfection wavelength and amplitude as variable parameters,this paper introduces the experimental method of PIP system with initial imperfection in detail. Through three groups of experiments,the phenomena and cause of dynamic effect in the global thermal buckling experiments are analyzed,and the dynamic effect of initial imperfection wavelength which play a key role on the global buckling process is found. Based on this,the ABAQUS hermit dynamic analysis method is used to establish the finite element analysis models of the global buckling of PIP system,and the accuracy of the models are verified by comparing with the experimental results. Then the influence of pipe diameter,initial imperfection and pipe-soil interaction on the dynamic effect of pipeline buckling is analyzed. The relationships between each factor and critical buckling force,lateral ejection velocity,lateral displacement and overall kinetic energy of pipeline are found. Through comparative analysis,the critical point of the ratio of diameter to thickness and the critical point of the ratio of imperfection wavelength to pipe length are found. And the result of thepipe-soil interaction has a significant influence on the global buckling dynamic effect and the mechanism is analyzed.At last,the research results have a certain guiding significance for the design and laying of deep-sea oil and gas transmission PIP system.
引文
[1]刘润,刘文斌,谭振东,等.含初始缺陷海底管线整体屈曲的分析和数值模拟[J].中国造船,2015,56(1):159-167.Liu Run,Liu Wenbin,Tan Zhendong,et al.Analytical and numerical solution on global buckling of imperfect submarine pipeline[J].Shipbuilding of China,2015,56(1):159-167(in Chinese).
    [2]施若苇.海底管道热屈曲及管土相互作用研究[D].杭州:浙江大学建筑工程学院,2014.Shi Ruowei.Global Buckling of Subsea Pipelines and Pipe-Soil Interaction[D].Hangzhou:School of Architectural Engineering,Zhejiang University,2014(in Chinese).
    [3]王立忠,王宽君,施若苇.管道热屈曲动力过程数值模拟[J].海洋工程,2015,33(5):73-80.Wang Lizhong,Wang Kuanjun,Shi Ruowei.Numerical simulation for the dynamic process of pipeline buckling[J].The Ocean Engineering,2015,33(5):73-80(in Chinese).
    [4]车小玉,段梦兰,增光霞,等.双层管道整体屈曲实验研究及数值模拟[J].应用数学和力学,2014,35(2):188-199.Che Xiaoyu,Duan Menglan,Zeng Guangxia,et al.Experimental study and numerical simulation of global buckling of pipe-in-pipe systems[J].Applied Mathematics and Mechanics,2014,35(2):188-199(in Chinese).
    [5]Wang Zhe,Chen Zhihua,Liu Hongbo.On lateral buckling of subsea pipe-in-pipe systems[J].International Journal of Steel Structures,2015,15(4):881-892.
    [6]Erkmen R Emre,Mohareb M,Afnani A.Multi-scale overlapping domain decomposition to consider elastoplastic local buckling effects in the analysis of pipes[J].International Journal of Structural Stability and Dynamics,2017,17(1):1750015-1-28.
    [7]Lopes J L,Paidoussis M P,Semler C.Linear and nonlinear dynamics of cantilevered cylinders in axial flow.Part2:The equations of motion[J].Journal of Fluids and Structures,2002,16(6):715-737.
    [8]Vaz M A,Patel M H.Lateral buckling of bundled pipe systems[J].Marine Structures,1999,12(1):21-40.
    [9]赵天奉.高温海底管道温度应力计算与屈曲模拟研究[D].大连:大连理工大学,2008.Zhao Tianfeng.Research on Thermal Stress and Buckling of HT Submarine Pipelines[D].Dalian:Dalian University of Technology,2008(in Chinese).
    [10]Goplen S,Fyrileiv O,Grandal J P,et al.Global Buckling of pipe-in-pipe:Structural response and design criteria[C]//30th International Conference on Ocean.Rotterdam:ASME,2011:777-784.
    [11]王哲,马克俭,陈志华,等.深海管道整体屈曲研究综述[J].天津大学学报:自然科学与工程技术版,2014,47(增):17-23.Wang Zhe,Ma Kejian,Chen Zhihua,et al.Overview of global buckling of deep-sea pipeline[J].Journal of Tianjin University:Science and Technology,2014,47(Suppl):17-23(in Chinese).
    [12]陈骥.钢结构稳定理论与设计[M].北京:中国科学出版社,2003.Chen Ji.Stability of Steel Structures Theory and Design[M].Beijing:Chinese Science Press,2003(in Chinese).
    [13]余建星,李智博,杜尊峰,等.深海管道非线性屈曲理论计算方法[J].海洋工程,2013,31(1):54-60.Yu Jianxing,Li Zhibo,Du Zunfeng,et al.Theoretical calculation method of the nolinear buckling of deepsea pipes[J].The Ocean Engineering,2013,31(1):54-60(in Chinese).
    [14]Tonkovi Z,Skozrit I,Sori J.Fracture of Nano and Engineering Materials and Structures[M].Netherlands:Springer,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700