用户名: 密码: 验证码:
新型热源塔溶液再生系统非稳态特性分析与实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study of a novel solution regeneration system for heat-source tower under unsteady state
  • 作者:文先太 ; 于娇 ; 曹先齐 ; 余鹏飞 ; 蔡宁 ; 茅逸凡
  • 英文作者:WEN Xiantai;YU Jiao;CAO Xianqi;YU Pengfei;CAI Ning;MAO Yifan;School of Energy and Power Engineering, Nanjing Institute of Technology;School of Energy and Environment, Southeast University;
  • 关键词:非稳态 ; 沸腾冷凝 ; 再生效率 ; 热源塔
  • 英文关键词:unsteady state;;boiling and condensation;;regeneration efficiency;;heat-source tower
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:南京工程学院能源与动力工程学院;东南大学能源与环境学院;
  • 出版日期:2018-10-23 16:17
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:南京工程学院科研启动基金(YKJ201606);; 国家重点研发计划项目(2016YFC0700305)
  • 语种:中文;
  • 页:HGSZ201901010
  • 页数:8
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:93-100
摘要
针对热源塔冬季运行时存在的吸湿问题,构建了一种新型热源塔溶液再生系统并对其进行实验测试。考虑到系统在初始运行时需要建立平衡的温度场且系统运行时存在溶液不断变浓的现象,对该溶液再生系统启动时的非稳态特性进行了研究,获取了各运行参数随初始运行次数的变化规律,同时对不同浓度下各运行参数变化规律进行了实验分析。实验结果表明:初始开机运行后,随着运行次数的增多,在总运行水量保持不变的情况下,单次运行所需电量呈下降趋势,冷凝水量呈上升趋势,最终系统趋于稳定。随着溶液浓度的变化,系统再生效率存在先增加后降低的趋势,当溶液浓度达到18.5%时出现最佳值,此时再生效率为4.28 kg/(kW·h),再生速率为749 kg/d,再生百分比为14%。该装置将溶液的真空沸腾过程和冷凝过程融合在一起,系统能耗大大降低,具有较好的节能效果。
        Based on the problem of moisture absorption in winter for heat source tower, a novel solution regeneration system is proposed in this paper. The corresponding test bench is constructed to carry out the relevant experimental tests. Considering with the balanced temperature field in the initial operation and the phenomenon of solution thicken with the water seperation from solutionin, the unsteady characteristics of the solution regeneration system during start-up are studied, and the variation of the operation parameters with the initial running times is obtained.Simultaneously the regularity of operation parameters with different concentration is studied. The results show that:with the increase of initial operation times, under the condition that the total running water quantity remainsun changed, the energy consumption for a single operation decreases, the condensate water rate increases, and finally the system tends to be stable. With the increase of solution concentration, the regeneration efficiencyincreases first and then reduces. When the solution concentration is 18.5%, the regeneration efficiency reaches themaximum. Simultaneously the regeneration efficiency is 4.28 kg/(kW·h), and the regeneration rate is 749 kg/d. There generation percentage is 14%. In the system, low pressure boiling process of the solution is combined with the condensation process, and the energy efficiency is great.
引文
[1] Huang S F, Lv Z Y, Liang C H, et al. Experimental study of heat and mass transfer characteristics in a cross-flow heating tower[J].International Journal of Refrigeration, 2017, 77:116-127.
    [2] Huang S F, Lv Z Y, Liang C H, et al. Experimental investigation on heat and mass transfer in heating tower solution regeneration using packing tower[J]. Energy and Buildings, 2018, 164:77–86.
    [3]梁彩华,文先太,张小松.基于热源塔的热泵系统构建与实验[J].化工学报, 2010, 61(S2):142-146.Liang C H, Wen X T, Zhang X S. Construction and experimental research on heat pump system based on heat-source tower[J].CIESC Journal, 2010, 61(S2):142-146.
    [4]李念平,张鼎,成剑林,等.热源塔热泵空调系统经济性分析[J].深圳大学学报(理工版), 2015, 32(4):404-410.Li N P, Zhang D, Cheng J L, et al. Economic analysis of heat pump air conditioning system of heat-source tower[J]. Journal of Shenzhen University(Science and Engineering), 2015, 32(4):404-410.
    [5] Wu J S, Zhang G Q, Zhang Q, et al. Artificial neural network analysis of the performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating system in winter[J]. Energy and Building, 2011, 43:1685-1693.
    [6] Lu J, Li W Y, Zeng L Y, et al. Numerical study on heat and mass transfer characteristics of the counter-flow heat-source tower(CFHST)[J]. Energy and Buildings, 2017, 145:318-330.
    [7] Liang C H, Wen X T, Liu C X. Performance analysis and experimental study of heat-source tower solution regeneration[J].Energy Conversion and Management, 2014, 85:596-602.
    [8]文先太,梁彩华,刘成兴,等.基于空气能量回收的热源塔溶液再生系统节能性分析[J].化工学报, 2011, 62(11):3242-3247.Wen X T, Liang C H, Liu C X, et al. Energy-saving analysis of solution regeneration in heat-source tower based on recovery of air energy[J]. CIESC Journal, 2011, 62(11):3242-3247.
    [9] Wen X T, Liang C H, Zhang X S. Experimental study on heat transfer coefficient between air and liquid in the cross-flow heatsource tower[J]. Building and Environment, 2012, 57:205-213.
    [10]文先太,梁彩华,张小松,等.热源塔传质特性的分析与实验研究[J].化工学报, 2011, 62(4):901-907.Wen X T, Liang C H, Zhang X S, et al. Mass transfer characteristics in heat-source tower[J]. CIESC Journal, 2011, 62(4):901-907.
    [11]文先太,梁彩华,刘成兴,等.叉流热源塔传热传质模型的建立及实验验证[J].化工学报, 2012, 63(8):2398-2404.Wen X T, Liang C H, Liu C X, et al. Verification of model for heat and mass transfer process in cross flow heat-source tower[J].CIESC Journal, 2012, 63(8):2398-2404.
    [12] Qi R H, Lu L, Huang Y. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones[J]. Energy Conversion and Management,2014, 88:749-757.
    [13]彭冬根,罗丹婷,李顺意.内热型除湿溶液再生器溶液再生方式及装置性能分析[J].农业工程学报, 2017, 33(18):165-172.Peng D G, Luo D T, Li S Y. Analysis of performance and regeneration method of internally-heated liquid desiccant regenerator[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(18):165-172.
    [14]彭冬根,罗丹婷,程小松.热回收型太阳能分级溶液集热/再生系统模型及环境适用性分析[J].化工学报, 2017, 68(8):3242-3249.Peng D G, Luo D T, Cheng X S. Modeling and environmental applicability of solar solution grading collector/regenerator system with heat recovery[J]. CIESC Journal, 2017, 68(8):3242-3249.
    [15] Peng D G, Zhang X S. A modified model of solar collector/regenerator considering effect of the glazing temperature[J].International Journal of Refrigeration, 2015, 49:151-159.
    [16] Khoudor K, Kameli G, Nesreen G. Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces[J]. Applied Energy, 2015,138:121-132.
    [17]殷勇高,潘雄伟,陈瑶,等.热空气用于溶液再生实验研究与能效分析[J].工程热物理学报, 2013, 34(4):596-600.Yin Y G, Pan X W, Chen Y, et al. Experimental study and energy efficiency analysis of liquid desiccant regeneration using hot air[J]. Journal of Engineering Thermophysics, 2013, 34(4):596-600.
    [18] Liu X H, Jiang Y, Yi X Q. Effect of regeneration mode on the performance of liquid desiccant packed bed regenerator[J].Renewable Energy, 2009, 34:209-216.
    [19] Mehta J R, Rane M V. Liquid desiccant based solar air conditioning system with novel evacuated tube collector as regenerator[J]. Procedia Engineering, 2013, 51:688-693.
    [20] Rajat S D, Sanjeev J. Experimental investigations on a solar assisted liquid desiccant cooling system with indirect contact dehumidifier[J]. Solar Energy, 2017, 153:289-300.
    [21] Li X W, Zhang X S. Photovoltaic–electrodialysis regeneration method for liquid desiccant cooling system[J]. Solar Energy, 2009,83:2195-2204.
    [22] Li X W, Zhang X S, Shuo Q. Single-stage and double-stage photovoltaic driven regeneration for liquid desiccant cooling system[J]. Applied Energy, 2011, 88:4908-4917.
    [23] Cheng Q, Xu W H. Performance analysis of a novel multifunction liquid desiccant regeneration system for liquid desiccant air-conditioning system[J]. Energy, 2017, 140:240-252.
    [24] Cheng Q, Zhang X S, Jiao S. Experimental comparative research on electrodialysis regeneration for liquid desiccant with different concentrations in liquid desiccant air-conditioning system[J].Energy and Buildings, 2017, 155:475-483.
    [25] Cheng Q, Zhang X S, Li X W. Performance analysis of a new desiccant pre-treatment electrodialysis regeneration system for liquid desiccant[J]. Energy and Buildings, 2013, 66:1-15.
    [26] Cheng Q, Xu Y, Zhang X S. Experimental investigation of an electrodialysis regenerator for liquid desiccant[J]. Energy and Buildings, 2013, 67:419-425.
    [27] Alexander S R, Ananda K N, Srinivas G, et al. Modeling of a flat plate membrane-distillation system for liquid desiccant regeneration in air conditioning applications[J]. International Journal of Heat and Mass Transfer, 2011, 54:3650–3660.
    [28] Sciadone O, Albanese A, Angelo A, et al. Investigation of electrode material-redox couple systems for reverse electrodialysis processes(Ⅱ):Experiments in a stack with 10—50cell pairs[J]. Journal of Electroanalytical Chemistry, 2013, 704:1-9.
    [29] Farrell E, Hassan M I, Tufa R A. Reverse electrodialysis powered greenhouse concept for water and energy-self-sufficient agriculture[J]. Applied Energy, 2017, 187:390-409.
    [30] Khoudor K, Kamel G, Nesreen G. Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces[J]. Applied Energy, 2015,138:121-132.
    [31] Keith A, Brian D, Troy F, et al. Failure analysis of an MVR(mechanical vapor recompressor)impeller[J]. Engineering Failure Analysis, 2010, 17:1345-1358.
    [32]邓赛峰,邹同华,张涛,等.真空条件下除湿溶液再生的模拟与实验研究[J].真空科学与技术学报, 2015, 35(5):544-549.Deng S F, Zou T H, Zhang T, et al. Numerical simulation and experimental evaluation of desiccant-solution recycling in vacuum[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(5):544-549.
    [33]张涛.真空条件下溶液再生机理研究[D].天津:天津商业大学,2013.Zhang T. Study on the regeneration mechanism of liquid under vacuum condition[D]. Tianjin:Tianjin University of Commerce,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700