用户名: 密码: 验证码:
煤基粗油轻质组分定性定量分析现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Status quo and outlook of qualitative and quantitative analysis of light weight fractions of coal-based crude oil
  • 作者:李文英 ; 慕海 ; 王伟 ; 叶翠平 ; 冯杰
  • 英文作者:LI Wenying;MU Hai;WANG Wei;YE Cuiping;FENG Jie;Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology;College of Environmental Science and Engineering, Taiyuan University of Technology;
  • 关键词:煤基粗油轻质组分 ; 物料衡算 ; (气相色谱-质谱联用)/火焰离子化检测仪 ; 定性定量分析 ; 响应因子
  • 英文关键词:light weight fractions of coal-based crude oil;;material balance;;GC-MS/FID;;qualitative and quantitative analysis;;response factor
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:太原理工大学煤科学与技术省部共建国家重点实验室培育基地;太原理工大学环境科学与工程学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家重点研发计划(2016YFB0600305);; 国家自然科学基金-山西煤基低碳联合基金重点支持项目(U1610221)
  • 语种:中文;
  • 页:HGJZ201901020
  • 页数:12
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:224-235
摘要
煤基粗油是指原煤经各种热化学反应、化工过程加工处理后得到的初级液体产物,包括煤焦油、煤直接液化油和煤间接液化油等。以生产过程全流程物料衡算为约束条件,对煤基粗油全组分组成的准确定性定量分析,不仅可以全面掌握煤基粗油的组成组分性质,而且可实现对煤基粗油的进一步精准加工、提质生产。但由于煤基粗油组分组成的复杂性,不仅难以实现进样组分及分析结果之间的物料衡算,而且也不能最大程度地实现对所有组分的组成及含量的准确分析,至今尚未见到对此内容相关文献资料报道,也没有相应分析方法的国家或行业标准。因此,以物料衡算为约束,建立全面、系统的分析方法,对煤基粗油进行精准定性定量分析是目前亟需解决的问题。本文指出利用气相色谱与红外光谱联用、液相色谱分离后与紫外光谱、同步荧光光谱联用等光谱分析法可快速获得煤基粗油族组分含量的测定,或是对煤基粗油性质做定性的描述;核磁共振波谱法可实现酚类化合物准确的定性、定量;化学分析法仅适合于煤基粗油具体成分的定性定量分析;红外光谱、核磁共振波谱、凝胶渗透色谱和元素分析结合可系统分析与表征煤基粗油及其组分,得到一些重要的物质结构参数信息;色谱分析法可通过色谱的分离功能使复杂混合物分离,并利用各种检测器工作原理的不同来实现定性和定量。其中定性主要采用质谱仪、光谱仪、核磁共振波谱仪等;定量的方法有归一化法、内标法、外标法、响应因子预测法。针对煤基粗油轻质组分(沸点<350℃)组成的定性定量,气相色谱-质谱联用(GC-MS)技术为此分析过程提供了可能,本文提出并推导了火焰离子化检测仪(FID)响应因子预测公式,将该公式与面积归一化法联用建立FID定量方法体系,加标回收实验(回收率为99.07%,质量分数)表明该方法体系准确、有效,可以被广泛应用于复杂有机混合物的定量分析中,并指出煤基粗油轻质组分定性定量分析过程中的关键在于对复杂混合物中各组分响应因子的准确获得。
        Coal-based crude oil refers to initial liquid products obtained from thermal chemical reactions, chemical engineering processes of coal, which includes coal tar, coal direct liquefaction oil, andFischer-Tropsch oil etc. Accurately analyzing the chemical composition and characteristics of coal-basedcrude oil is beneficial to its fine processing, downstream industrial processing and conversion of theobjective products with a product-demand-oriented mode. At the same time, an intensive study of thecomposition of coal-based crude oil also contributes to the improvement of coal processing techniques.However, due to the complexity of coal-based crude oil, no exact composition and content of coal-basedcrude oil have been reported, and there is no national or industry standard for corresponding analysismethods so far. Particularly the problem of material balance during the whole production process in thequalitative and quantitative analysis has not been solved yet. Therefore, a more precise qualitative andquantitative analysis of coal-based crude oil with material balance as a constraint, and the establishmentof a comprehensive and systematic analysis method in the whole production process is still an urgent issueto be solved. The paper points out that the combination of gas chromatography and infrared spectroscopy,liquid chromatography separation and ultraviolet spectroscopy, synchronous fluorescence spectroscopy,and other spectral analysis methods can quickly obtain the content of coal-based crude oil group-components, or qualitative description of coal-based crude oil properties; Nuclear magnetic resonancespectroscopy can achieve accurate qualitative and quantitative determination of phenolic compounds;Chemical analysis is only suitable for qualitative and quantitative analysis of specific components of coal-based crude oil; Analysis and characterization combination of infrared spectroscopy, nuclear magneticresonance spectroscopy, gel permeation chromatography and elemental analysis can systemically acquiresome important structural parameters of coal-based crude oil; Chromatographic analysis can separatecomplex mixtures by chromatographic separation function, and use different detectors to achievequalitative and quantitative of samples. The qualitative methods mainly use mass spectrometer,spectrometer, nuclear magnetic resonance spectrometer, etc. The quantitative methods includenormalization method, internal standard method, external standard method and response factor predictionmethod. For the qualitative and quantitative determination of the light weight fractions of coal-basedcrude oil(boiling point <350℃), gas chromatography-mass spectrometry(GC-MS) technology providesthe possibility of this analysis process. Especially the detection principle and quantitative method of flameionization detector(FID) detector was reviewed at length and deduced the FID response factor predictionformula. The formula will be combined with area normalization method to establish the FID quantitativemethod system, and results from the standard addition recovery experiment(recovery rate is 99.07 wt%)indicate that the method system is accurate and effective, and can be widely applied to the quantitativeanalysis of complex organic mixtures. In the end, the key to the material balance in the whole productionprocess lies in the prompt, accurate and large-scale quantification of complex organic compounds waspointed out. Preliminary analysis results showed that the combination of instruments, especially GC-MS/FID, would be one of the main ways to achieve qualitative and quantitative analysis of composition of light weight fractions constrained by material balance for the time being. It was inferred that the key to the qualitative and quantitative analysis of the light components of coal-based crude oil was the accurate acquisition of the response factors of each component in the complex mixture.
引文
[1]张德祥.煤制油技术基础与应用研究[M].上海:上海科学技术出版社, 2013.ZHANG Dexiang. Coal oil technology foundation and applicationresearch[M]. Shanghai:Shanghai Science and Technology Press,2013.
    [2]肖瑞华.煤焦油化工学[M].北京:冶金工业出版社,2009.XIAO Ruihua. Coal tar chemical engineering[M]. Beijing:Metallurgical Industry Press,2009.
    [3]朱继升,LAWRENCE P N,EDWIN L K,等.两种烟煤的液化及液化油的组成特征研究[J].燃料化学学报,2001,29(3):214-218.ZHU Jisheng,LAWRENCE P N,EDWIN L K,et al. Study onliquefaction and composition of two bituminous coals[J]. Journal ofFuel Chemistry and Technology,2001, 29(3):214-218.
    [4] WHITEHURST D D, SIDNEY E B, FRANCIS J. D, et al. Newcharacterization techniques for coal-derived liquids[J]. Fuel,1982, 61(10):994-1005.
    [5]吴美香.煤液化油窄馏分族组成定量分析方法的建立[D].太原:太原理工大学, 2014.WU Meixiang. Establishment of a quantitative analysis method forthe composition of narrow-cut fractions of coal liquefaction oils[D]. Taiyuan:Taiyuan University of Technology, 2014.
    [6]樊文俊,吴美香,郝建树,等.紫外光谱法分析煤直接液化油族组成[J].光谱学与光谱分析, 2015, 35(7):1938-1943.FAN Wenjun, WU Meixiang, HAO Jianshu, et al. Ultravioletspectroscopy analysis of direct coal liquefaction oil composition[J].Spectroscopy and Spectral Analysis, 2015, 35(7):1938-1943.
    [7] KERSHAW J R, CHIRAG S, JUNICHIRO H, et al. Fluorescencespectroscopic analysis of tars from the pyrolysis of a victorianbrown coal in a wire-mesh reactor[J]. Energy&Fuels, 2000, 14(2):476-482.
    [8]余立旺,尤静林,王媛媛,等.煤焦油的拉曼光谱表征和组分识别[J].燃料化学学报, 2015, 43(5):530-536.YU Liwang, YOU Jinglin, WANG Yuanyuan, et al. Coal tar ramanspectroscopic characterization and component identification[J].Journal of Fuel Chemistry and Technology, 2015, 43(5):530-536.
    [9] FARNUM S A, FARNUM B W. Determination of low-rank coalliquefaction light oils by chromatography and nuclear magneticresonance spectrometry[J]. Analytical Chemistry, 1982, 54(6):979-985.
    [10]高振楠,刘立麟,朱肖曼.核磁共振法应用于煤液化油中酚类化合物分析[J].洁净煤技术, 2007, 13(6):35-39.GAO Zhennan, LIU Lilin, ZHU Xiaoman. NMR method applied tothe analysis of phenolic compounds in coal liquefaction oils[J].Clean Coal Technology, 2007, 13(6):35-39.
    [11] SCHWEIGHARDT F K, RETCOFSKY H L, FRIEDMAN S, et al.Trimethylsilyl ether formation to quantitate hydroxyls by nuclearmagnetic resonance spectrometry[J]. Analytical Chemistry, 1978,50(2):368-371.
    [12] SNAPE C E, SMITH C A, BARTLE K D, et al. Estimation ofoxygen group concentrations in coal extracts by nuclear magneticresonance spectrometry[J]. Analytical Chemistry, 1982, 54(1):20-25.
    [13] FLOYD F L. Determination of phenols by fluorine-19 nuclearmagnetic resonance of hexafluoroacetone derivatives[J]. AnalyticalChemistry, 1974, 46(4):496-499.
    [14] KOLLER K L, DORN H C. Acid-catalyzed reactions of 2, 2, 2-trifluorodiazoethane for analysis of functional groups by fluorine-19 nuclear magnetic resonance spectrometry[J]. AnalyticalChemistry, 1982, 54(3):529-533.
    [15] SLEEVI P, GLASS T E, DORN H C. Trifluoroacetyl chloride forcharacterization of organic functional groups by fluorine-19nuclear magnetic resonance spectrometry[J]. AnalyticalChemistry, 1979, 51(12):1931-1934.
    [16] SPRATT M P, DORN H C. p-Fluorobenzoyl chloride forcharacterization of active hydrogen functional groups by fluorine-19 nuclear magnetic resonance spectrometry[J]. AnalyticalChemistry, 1984, 56(12):2038-2043.
    [17] ERIC J D, STANFORD L S, BURTRON H D. Determination ofhydroxyl group concentration in coal liquids by phosphorus-31NMR[J]. Energy&Fuels, 1988, 2(3):326-332.
    [18] ERDMANN K, MOHAN T, VERKADE J G. HPLC and31P NMRanalysis of phenols in coal liquefaction oils[J]. Energy&Fuels,1996, 10(2):378-385.
    [19] LENSINK C, VERKADE J G. Phosphorus-31 NMR spectroscopicanalysis of labile hydrogen functional groups:identification with adithiaphospholane reagent[J]. Energy&Fuels, 1990, 42(2):197-201.
    [20] RAFII E, FAURE R, LENA L, et al. Characterization of phenolsfrom coal liquefaction products by tin-119 nuclear magneticresonance spectrometry[J]. Analytical Chemistry, 1985, 57(14):2854-2858.
    [21]李延红.煤液化油中含氮化合物存在形式及分布的研究[D].上海:华东理工大学, 2014.LI Yanhong. The existence and distribution of nitrogenouscompounds in coal liquefaction oils[D]. Shanghai:East ChinaUniversity of Science and Technology, 2014.
    [22]洗油酚含量的测定方法:GB/T 24207—2009[S].北京:中国标准出版社,2009.Determination of phenol content of washing oil:GB/T 24207—2009[S]. Bejing:Standards Press of China, 2009.
    [23]苏鸿.气相色谱法测定洗油的酚和萘含量[J].燃料与化工,2012, 43(3):50, 52.SU Hong. Determination of phenol and naphthalene contents inwashing oil by gas chromatography[J]. Fuel&Chemical Processes,2012, 43(3):50, 52.
    [24]张飏,孙会青,白效言,等.低温煤焦油的基本特性及综合利用[J].洁净煤技术, 2009, 15(6):57-60.ZHANG Yang, SUN Huiqing, BAI Xiaoyan, et al. The basiccharacteristics of low-temperature coal tar and comprehensiveutilization[J]. Clean Coal Technology, 2009, 15(6):57-60.
    [25]史军歌,吴梅,田松柏,等.电位滴定法测定煤焦油中的有机弱酸含量[J].石油炼制与化工, 2015, 46(8):96-100.SHI Junge, WU Mei, TIAN Songbai, et al. Potentiometric titrationmethod for determining the content of organic weak acids in coal tar[J]. Petroleum Processing and Petrochemicals, 2015, 46(8):96-100.
    [26]刘艳玲.热量法测定煤焦油中的混合馏分的酚含量[J].河北冶金, 2002(4):62-63.LIU Yanling. Determination of the phenol content of mixedfractions in coal tar by thermal method[J]. Hebei Metallurgy, 2002(4):62-63.
    [27]华东理工大学分析化学教研组,四川大学工科化学基础课程教学基地.分析化学[M]. 6版.北京:高等教育出版社, 2012.East China University of Science and Technology Teaching andResearch Group, Sichuan University Engineering ChemistryFoundation Course Teaching Base. Analytical Chemistry[M].6th ed. Beijing:Higher Education Press, 2012.
    [28] PADLO D M, SUBRAMANIAN R B, KUGLER E L. Hydrocarbonclass analysis of coal-derived liquids using high performanceliquid chromatography[J]. Fuel Processing Technology, 1996, 49(1-3):247-258.
    [29]李勇志,俞惟乐.重质油族组成的分析方法[J].石油化工,1997, 26(7):491-497.LI Yongzhi, YU Weile. Heavy oil composition analysis method[J].Petrochemical Technology, 1997, 26(7):491-497.
    [30] MATSUMOTO A, SATO Y, NAKAMURA T. Type analysis of aproduct oil from coal hydrogenation by field ionization-MSutilizing selective desorption from adsorbents[J]. Japan Analyst,1990, 39:527-531.
    [31] YOKOYAMA S, ITOH Y, SATOH M, et al. Identification ofcompounds in coal liquefaction oil as compound type homologue byHPLC/GC-MSanalyses[J].SekitanKagakuKaigiHappyoRonbunshu,1993, 30:256-259.
    [32] BRIKER Y, IACCHELLI A, MCLEAN N. Miniaturized method forseparation and quantification of nitrogen species in petroleumdistillates[J]. Fuel, 2003, 82(13):1621-1631.
    [33]张昌鸣,李允梅,令狐文生,等.气-液色谱联合分析煤油共炼产物族组成[J].分析试验室, 2003, 22(2):24-26.ZHANG Changming, LI Yunmei, LINGHU Wensheng, et al. Gas-liquid chromatography combined analysis of kerosene co-productfamily composition[J]. Chinese Journal of Analysis Laboratory,2003, 22(2):24-26.
    [34]万惠民,李桂贞,颜涌捷,等.高效液相色谱法测定液化煤中的多环芳烃[J].华东理工大学学报, 1996(2):211-216.WAN Huimin, LI Guizhen, YAN Yongjie, et al. Determination ofpolycyclic aromatic hydrocarbons in liquefied coal by highperformance liquid chromatography[J]. Journal of East ChinaUniversity of Science and Technology, 1996(2):211-216.
    [35] MCKINNEY D E, CLIFFORD D J, LEI H, et al. High performanceliquid chromatography(HPLC)of coal liquefaction processstreams using normal-phase separation with diode array detection[J]. Energy&Fuels, 1994, 9(1):90-96.
    [36]王占生,孙玮琳,江双清,等.原油组分TLC-FID棒色谱分析及初步应用[J].石油与天然气地质, 1995, 16(3):222-226.WANG Zhansheng, SUN Yulin, JIANG Shuangqing, et al. Crudeoil component TLC-FID bar chromatographic analysis andpreliminary application[J]. Oil&Gas Geology, 1995, 16(3):222-226.
    [37]杨海鹰,顾洁,蔺玉贵. TLC/FID法测定重油烃族组成方法研究[J].现代科学仪器, 2000(4):28-30.YANG Haiying, GU Jie, LIN Yugui. TLC FID method for determination of hydrocarbon composition of heavy oil[J]. ModernScientific Instruments, 2000(4):28-30.
    [38]陶洁. TLC/FID法测定重芳烃含量[J].今日科苑, 2007(12):105-106.TAO Jie. TLC/FID determination of heavy aromatic content[J].Modern Science, 2007(12):105-106.
    [39]余卫娟,殷月芬,张杰,等. TLC-FID特征指纹鉴别不同来源原油[J].海洋环境科学, 2012, 31(6):901-905.YU Weijuan, YIN Yuefen, ZHANG Jie, et al. TLC-FID featurefingerprint identification of different sources of crude oil[J].Marine Environmental Science, 2012, 31(6):901-905.
    [40]杨佰娟,郑立,张魁英,等. TLC/FID分析原油SARA组成方法研究[J].石油与天然气化工, 2011, 40(2):201-203,222.YANG Baijuan, ZHENG Li, ZHANG Kuiying, et al. TLC/FIDanalysis of crude oil SARA composition method[J]. ChemicalEngineering of Oil&Gas, 2011, 40(2):201-203, 222.
    [41]汪正范.色谱联用技术[M].北京:化学工业出版社, 2001.WANG Zhengfan. Chromatography coupled technology[M].Beijing:Chemical Industry Press, 2001.
    [42]孙鸣,陈静,代晓敏,等.陕北中低温煤焦油减压馏分的GC-MS分析[J].煤炭转化, 2015(1):58-63.SUN Ming, CHEN Jing, DAI Xiaomin, et al. The GC-MS analysisof the middle-low temperature coal tar vacuum distillate innorthern Shaanxi[J]. Coal Conversion, 2015(1):58-63.
    [43]陈雪,朱来福,刘书林,等.内蒙低温煤焦油组分分离及GC-MS分析[J].广州化工, 2014(21):126-127.CHEN Xue, ZHU Laifu, LIU Shulin, et al. Inner Mongolia lowtemperature coal tar component separation and GC-MS analysis[J]. Guangzhou Chemical Industry, 2014(21):126-127.
    [44]范国梁,宋崇林,张延峰,等. GC-MS和GC-FID在定量分析中的差异[J].天津大学学报, 2003, 36(5):614-617.FAN Guoliang, SONG Chonglin, ZHANG Yanfeng, et al. GC-MSand GC-FID differences in quantitative analysis[J]. Journal ofTianjin University, 2003, 36(5):614-617.
    [45]张铭金,唐仁生,沈士德,等.高温煤焦油组成的毛细管气相色谱/傅立叶变换红外光谱研究——中油馏分的分析[J].色谱,1995, 13(6):418-423.ZHANG Mingjin, TANG Rensheng, SHEN Shide, et al. Capillarygas chromatography/fourier transform infrared spectroscopic studiesof high-temperature coal tar formation—analysis of oil fractions[J]. Chinese Journal of Chromatography, 1995, 13(6):418-423.
    [46]张铭金,陈帮杰,余仲建.同系物保留指数与沸点的关联式中斜率因子的重要作用[J].色谱, 1993(1):1-3.ZHANG Mingjin, CHEN Bangjie, YU Zhongjian. Important role ofthe slope factor in the correlation between retention index andboiling point of homologues[J]. Chinese Journal ofChromatography, 1993(1):1-3.
    [47]张铭金,沈士德,陈诵英,等.毛细管气相色谱/傅立叶变换红外光谱分析高温煤焦油中的重油馏分[J].色谱, 2000, 18(3):241-246.ZHANG Mingjin, SHEN Shide, CHEN Songying, et al. Capillarygaschromatography/Fouriertransforminfraredspectroscopyanalysisof heavy oil fractions in high temperature coal tar[J]. ChineseJournal of Chromatography, 2000, 18(3):241-246.
    [48] CICCHETTI E, PHILIPPE M, ALAIN C. Quantitation in gaschromatography:usual practices and performances of a response factor database[J]. Flavour and Fragrance Journal, 2008, 23(6):450–459.
    [49]王宇成.最新色谱分析检测方法及应用技术实用手册[M].长春:银声音像出版社, 2004.WANG Yucheng. The latest chromatographic analysis anddetection methods and practical application manual[M].Changchun:Yinsheng Audiovisual Press, 2004.
    [50] BASSEREAU M, CHAINTREAU A, DUPERREX S, et al. GC-MS quantification of suspected volatile allergens in fragrances. 2.Data treatment strategies and method performances[J]. Journal ofAgricultural and Food Chemistry, 2007, 55(1):25-31.
    [51] WANG M, ZENG L, LU S, et al. Development and validation of acryogen-free automatic gas chromatograph system(GC-MS/FID)for online measurements of volatile organic compounds[J].Analytical Methods, 2014, 6(23):9424-9434.
    [52] PHURPA W, DORJI S. GC-FID coupled GC-MS analysis of theessential oil and the recorded biological activities of meconopsissimplicifolia[J]. Journal of Biologically Active Products fromNature, 2015, 5(6):365-372.
    [53] MURAT G, AYSE T O, EBRU K. Comparison of lipids, fattyacids and volatile compounds of various kumquat species usingHS/GC/MS/FID techniques[J]. Journal of the Science of Food andAgriculture, 2015, 95(6):1268.
    [54] KONRAD G, MAURUS B, ADRIAN C, et al. LC‐GC analysis ofthe aromatics in a mineral oil fraction:Batching oil for jute bags[J]. Journal of Separation Science, 2015, 14(1):33-39.
    [55] MATTEO B, ALESSANDRA L, MARIA C, et al. GC-FID/MSmethod for the impurity profiling of synthetic D-allethrin[J].Journal of Separation Science, 2015, 27(1‐2):89-95.
    [56] MICHAELA N, CHRISTIAN B, DENISE R, et al. Pyrolysisbehaviour study of a tar-and sulphur-rich brown coal and GC-FID/MS analysis of its tar[J]. Journal of Analytical and AppliedPyrolysis, 2015, 115:194-202.
    [57] RODRIGUEZ G, SALGADO J, DOMINGUEZ J M, et al.Comparison of soxhlet, accelerated solvent and supercritical fluidextraction techniques for volatile(GC-MS and GC FID)andphenolic compounds(HPLC-ESI/MS/MS)from lamiaceae species[J]. Phytochemical Analysis:PCA, 2015, 26(1):61-71.
    [58] EBRAHIMABADI E H, GHOREISHI S M, MASOUM S, et al.Combination of GC FID Mass spectrometry fingerprints andmultivariate calibration techniques for recognition of antimicrobialconstituents of Myrtus communis L. essential oil[J]. Journal ofChromatography B:Analytical Technologies in the Biomedical andLife Sciences, 2016, 1008:50-57.
    [59] SCIARRONE D, COSTA R, RAGONESE C, et al. Application of amultidimensional gas chromatography system with simultaneousmass spectrometric and flame ionization detection to the analysisof sandalwood oil[J]. Journal of Chromatography A, 2011, 1218(1):137-142.
    [60] LOUREN O, DUARTE M N, JORGE G, et al. Characterization oflignin in heartwood, sapwood and bark from tectona grandis usingPy-GC-MS/FID[J]. Wood Science and Technology, 2015, 49(1):159-175.
    [61] MARSMAN J H, WILDSCHUT J, MAHFUD F, et al.Identification of components in fast pyrolysis oil and upgradedproducts by comprehensive two-dimensional gas chromatographyand flame ionisation detection[J]. Journal of Chromatography A,2007, 1150(2):21.
    [62] PETER Q T, SIMONA S, IVANA B, et al. Analysis of theunsaponifiable fraction of lipids belonging to various milk-typesby using comprehensive two-dimensional gas chromatographywith dual mass spectrometry/flame ionization detection and withthe support of high resolution time-of-flight mass spectrometry forstructural elucidation[J]. Journal of Chromatography A, 2013, 1313(19):194-201.
    [63] DJOKIC M R, DIJKMANS T, YILDIZ G, et al. Quantitativeanalysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography[J]. Journal of ChromatographyA, 2012, 1257(18):131-140.
    [64] GYUNG C, SEUNG O, SOON L, et al. Production of bio-basedphenolic resin and activated carbon from bio-oil and biocharderived from fast pyrolysis of palm kernel shells[J]. BioresourceTechnology, 2015, 178:99.
    [65] TISSOT E, ROCHAT S, DEBONNEVILLE C, et al. Rapid GC‐FIDquantification technique without authentic samples usingpredicted response factors[J]. Flavour and Fragrance Journal,2012, 27(4):290-296.
    [66] SABINE L, SANDY F, YING W, et al. Quantification ofhydroperoxides by gas chromatography‐flame ionization detectionand predicted response factors[J]. Flavour and Fragrance Journal,2016, 31(4):329-335.
    [67] HARLEY J, NEL W, PRETORIUS V. Flame ionization detectorfor gas chromatography[J]. Nature, 1958, 181(4603):177-178.
    [68] TORKIL H. Aspects of the mechanism of the flame ionizationdetector[J]. Journal of Chromatography A, 1999, 842(1):221-227.
    [69]孙传经.气相色谱分析原理与技术[M].北京:化学工业出版社, 1979.SUN Chuanjing. Gas chromatography analysis principle andtechnology[M]. Beijing:Chemical Industry Press, 1979.
    [70]汪正范.色谱定性与定量[M].北京:化学工业出版社, 2000.WANG Zhengfan. Chromatographic qualitative and quantitative[M]. Beijing:Chemical Industry Press, 2000.
    [71] JAMES C S, WILLIAM S G, DAVID T J. The mechanism ofresponse of flame ionization detectors[J]. Gas Chromatography,1962:231-267.
    [72] JAMES T, DONALD E. Calculation of flame ionization detectorrelative response factors using the effective carbon number concept[J]. Journal of Chromatographic Science, 1985, 23(8):333-340.
    [73]刘绍仁,叶纪明.有效碳数法研究及其在农药气相色谱分析中的应用[J].农药科学与管理, 1997(4):5-9.LIU Shaoren, YE Jiming. The effective carbon number method andits application in pesticide gas chromatographic analysis[J].Pesticide Science and Administration, 1997(4):5-9.
    [74] JORGENSEN A D, KURT C P, VASSILIS C S. Prediction of gaschromatography flame ionization detector response factors frommolecular structures[J]. Analytical Chemistry, 1990, 62(7):683-689.
    [75] JALALI H M, GARKANI N Z. Use of self-training artificialneural networks in modeling of gas chromatographic relativeretention times of a variety of organic compounds[J]. Journal ofChromatography A, 2002, 945(1-2):173.
    [76] JALALI H M, FATEMI M H. Prediction of flame ionizationdetector response factors using an artificial neural network[J].Journal of Chromatography A, 1998, 825(2):161-169.
    [77] ALAN R K, ELENA S L, RICHARD A B, et al. Prediction of gaschromatographic retention times and response factors using ageneral qualitative structure-property relationships treatment[J].Analytical Chemistry, 1994, 66(11):1799-1807.
    [78] BONO L, NENAD T, SULEV S, et al. A new efficient approach forvariable selection based on multiregression:prediction of gaschromatographic retention times and response factors[J]. Journalof Chemical Information and Computer Sciences, 1999, 39(3):610-621.
    [79] CAO C, HUO P. Investigation of general expression to predict themolar response factor in the gc for monosubstituted alkanes[J].Journal of Chromatographic Science, 2007, 45(6):360-368.
    [80] GIUSEPPE M, DANILA P, ALAN R K, et al. Prediction of gaschromatographic response factors by the PLS method[J].Tetrahedron Computer Methodology, 1989, 2(1):17-36.
    [81]范国梁,宋崇林,周维义,等.氢火焰离子化检测器校正因子的理论计算[J].分析化学, 2002, 30(8):906-910.FAN Guoliang, SONG Chonglin, ZHOU Weiyi, et al. Thetheoretical calculation of the correction factor of hydrogen flameionization detector[J]. Chinese Journal of Analytical Chemistry,2002, 30(8):906-910.
    [82] LAUMER J, LEOCATA S, TISSOT E, et al. Prediction of gaschromatography with flame ionization detection response factors:algorithm improvement, extension to silylated compounds, andapplication to the quantification of metabolites[J]. Journal ofSeparation Science, 2015, 38(18):3209-3217.
    [83] SAINT L, CICCHETTI E, MERLE P, et al. Quantification in gaschromatography:prediction of flame ionization detector responsefactors from combustion enthalpies and molecular structures[J].Analytical Chemistry, 2010, 82(15):6457-6462.
    [84] CACHET T, BREVARD H, CHAINTREAU A, et al. IOFIrecommended practice for the use of predicted relative-responsefactors for the rapid quantification of volatile flavouringcompounds by GC-FID[J]. Flavour and Fragrance Journal, 2016,31(3):191-194.
    [85] BEENS J, BRINKMAN U. Comprehensive two-dimensional gaschromatography[J]. Analyst, 2005, 130(2):123-127.
    [86] JANIECE L, BRYAN J, ERIK J, et al. Comprehensive two-dimensional gas chromatography with time-of-flight massspectrometry detection[J]. Talanta, 2016, 65(2):380-388.
    [87] KATIE D, JAMES J. Analysis of alkyl phosphates in petroleumsamples by comprehensive two-dimensional gas chromatographywith nitrogen phosphorus detection and post-column Deansswitching[J]. Journal of Chromatography A, 2012, 1252(3):171.
    [88]张超群.煤焦油中酚类组分的提取与分离[D].青岛:中国石油大学(华东), 2009.ZHANG Chaoqun. Extraction and separation of phenols from coaltar[D]. Qingdao:China University of Petroleum, 2009.
    [89] WANG Y G, JIANG G C, ZHANG S J, et al. The application of amodified dissolving model to the separation of major componentsin low-temperature coal tar[J]. Fuel Processing Technology, 2016,149:313-319.
    [90]吴婷,凌凤香,马波,等. GC-MS分析低温煤焦油酸性组分及碱性组分[J].石油化工高等学校学报, 2013, 26(3):44-48, 52.WU Ting, LING Fengxiang, MA Bo, et al. GC-MS analysis ofacidic components and basic components of low-temperature coaltar[J]. Journal of Petrochemical Universities, 2013, 26(3):44-48,52.
    [91]傅若农.色谱分析概论[M].北京:化学工业出版社, 2000.FU Ruonong. Introduction to chromatography analysis[M]. Beijing:Chemical Industry Press, 2000.
    [92]刘虎威.气相色谱方法及应用[M].北京:化学工业出版社,2000.LIU Huwei. Gas chromatography method and application[M].Beijing:Chemical Industry Press, 2000.
    [93] TORKIL H, INGOLF C, HANS T, et al. Inner sphere and outersphere electron transfer to methyl iodide. deuterium and13Ckinetic isotope effects[J]. Acta Chemica Scandinavica, 1996, 50:90-93.
    [94] TORKIL H. Mechanism of the flame ionization detector II.Isotope effects and heteroatom effects[J]. Journal of ChromatographyA, 1997, 782(1):81-86.
    [95] TORKIL H, RGEN J M. Methane formation by flame-generatedhydrogen atoms in the flame ionization detector[J]. AnalyticalChemistry, 1996, 68(20):3607-3611.
    [96]许世海,刘治中.烃火焰中的离子及其对燃烧进程的影响[J].燃烧科学与技术, 1995, 1(4):347-353.XU Shihai, LIU Zhizhong. Ions in hydrocarbon flames and theireffect on the combustion process[J]. Journal of CombustionScience and Technology, 1995, 1(4):347-353.
    [97]慕海.以物料衡算为约束的煤基粗油定性定量研究[D].太原:太原理工大学, 2018.MU Hai. Qualitative and quantitative study of coal based crude oilconstrained by material balance[D]. Taiyuan:Taiyuan Universityof Technology, 2018.
    [98]顾蕙祥,阎宝石.气相色谱实用手册[M].北京:化学工业出版社, 1990.GU Huixiang, YAN Baoshi. Gas chromatography practical manual[M]. Beijing:Chemical Industry Press, 1990.
    [99] HUANG Y, OU Q, YU W. Characteristics of flame ionizationdetection for the quantitative analysis of complex organic mixtures[J]. Analytical Chemistry, 1990, 62(18):2063-2064.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700